scholarly journals Estimación de áreas quemadas de los incendios en la provincia de Córdoba durante agosto de 2020 utilizando imágenes multiespectrales

AJEA ◽  
2020 ◽  
Author(s):  
Facundo Ismael Casasola ◽  
Lidia Ana Otero
Keyword(s):  

Durante el mes de agosto de 2020, se presentaron en la provincia de Córdoba numerosos focos de incendios que derivaron en la pérdida de más de 80 mil hectáreas de bosques nativos. El presente trabajo tiene la finalidad de describir cómo el empleo de la información espectral de sensores remotos satelitales NOAA, MODIS, VIIRS, Landsat 8 y Sentinel 2 y 3 ofrecen la posibilidad de brindar recursos técnicos para el seguimiento “quasi real time” de la evolución e impacto en este tipo de emergencias.Los incendios forestales son una de las mayores causas de problemas ambientales y ecológicos en muchas partes del mundo. En la Argentina anualmente provocan la destrucción de miles de hectáreas de bosques nativos y otros tipos de vegetación. También consumen valiosos recursos económicos, generan un inmenso daño económico y alteraciones significativas de los ecosistemas, siendo una de las principales causas de la transformación de la cubierta terrestre.

2021 ◽  
Author(s):  
Dimitry Van der Zande ◽  
Kerstin Stelzer ◽  
Martin Böttcher ◽  
João Felipe Cardoso dos Santos ◽  
Carole Lebreton ◽  
...  

<p>High-quality satellite-based ocean colour products can provide valuable support and insights in management and monitoring of coastal ecosystems. Today’s availability of Earth Observation (EO) data is unprecedented including traditional medium resolution ocean colour systems (e.g. SeaWiFS, MODIS-AQUA, MERIS, Sentinel-3/OLCI), high resolution land sensors (e.g. Sentinel-2/MSI, Landsat-8/OLI, Pleiades) and geostationary satellites (e.g. SEVIRI). Each of these sensors offers specific advantages in terms of spatial, temporal or radiometric characteristics.</p><p>As a new production unit, the high resolution coastal service will be integrated in CMEMS. It offers 12 different products which are covered within the Ocean Colour Thematic Assembly Centre (OCTAC). The products can be categorized in two groups: 1) near real time (NRT) and Multi-Year near real time (MYNRT). The products are generated the coastal waters (20km stripe for the coastline) for all European Seas and are provided in 100m spatial resolution. All products are based on Sentinel-2 MSI data. The primary OCTAC variable from which it is virtually possible to derive all the geophysical and transparency products is the spectral Remote Sensing Reflectance (RRS). This, together with the Particulate Backscatter Coefficient (BBP), constitute the category of the optics products. The spectral BBP product is generated from the RRS products using a quasi-analytical algorithm. The transparency products include turbidity (TUR) and Suspended Particulate Matter (SPM) concentration. They are retrieved through the application of automated switching algorithms to the RRS spectra adapted to varying water conditions. The geophysical product consists of the Chlorophyll-a concentration (CHL) retrieved via a multi-algorithm approach with optimized quality flagging. The NRT products are generally provided withing 24 hours after end of the acquisition day, while monthly averaged products are provided few days after end of the respective month. A third group of products are daily gap-filled products which are provided once in a quarter. Validation of the variables has been performed by match-up analysis with in situ data as well as by comparison of the high resolution products with the well established Low Resolution CMEMS Ocean Colour products. The products will be introduced in the CMEMS service by May 2021. We will present the products themselves as well as the validation results for the different variables. The known limitations will be reported in order to provide a full picture of the new service.</p>


2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 846
Author(s):  
Mbulisi Sibanda ◽  
Onisimo Mutanga ◽  
Timothy Dube ◽  
John Odindi ◽  
Paramu L. Mafongoya

Considering the high maize yield loses caused by incidences of disease, as well as incomprehensive monitoring initiatives in crop farming, there is a need for spatially explicit, cost-effective, and consistent approaches for monitoring, as well as for forecasting, food-crop diseases, such as maize Gray Leaf Spot. Such approaches are valuable in reducing the associated economic losses while fostering food security. In this study, we sought to investigate the utility of the forthcoming HyspIRI sensor in detecting disease progression of Maize Gray Leaf Spot infestation in relation to the Sentinel-2 MSI and Landsat 8 OLI spectral configurations simulated using proximally sensed data. Healthy, intermediate, and severe categories of maize crop infections by the Gray Leaf Spot disease were discriminated based on partial least squares–discriminant analysis (PLS-DA) algorithm. Comparatively, the results show that the HyspIRI’s simulated spectral settings slightly performed better than those of Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor. HyspIRI exhibited an overall accuracy of 0.98 compared to 0.95, 0.93, and 0.89, which were exhibited by Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor sensors, respectively. Furthermore, the results showed that the visible section, red-edge, and NIR covered by all the four sensors were the most influential spectral regions for discriminating different Maize Gray Leaf Spot infections. These findings underscore the potential value of the upcoming hyperspectral HyspIRI sensor in precision agriculture and forecasting of crop-disease epidemics, which are necessary to ensure food security.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2021 ◽  
Vol 54 (1) ◽  
pp. 182-208
Author(s):  
Sani M. Isa ◽  
Suharjito ◽  
Gede Putera Kusuma ◽  
Tjeng Wawan Cenggoro
Keyword(s):  

2021 ◽  
Vol 13 (15) ◽  
pp. 2961
Author(s):  
Rui Jiang ◽  
Arturo Sanchez-Azofeifa ◽  
Kati Laakso ◽  
Yan Xu ◽  
Zhiyan Zhou ◽  
...  

Cloud cover hinders the effective use of vegetation indices from optical satellite-acquired imagery in cloudy agricultural production areas, such as Guangdong, a subtropical province in southern China which supports two-season rice production. The number of cloud-free observations for the earth-orbiting optical satellite sensors must be determined to verify how much their observations are affected by clouds. This study determines the quantified wide-ranging impact of clouds on optical satellite observations by mapping the annual total observations (ATOs), annual cloud-free observations (ACFOs), monthly cloud-free observations (MCFOs) maps, and acquisition probability (AP) of ACFOs for the Sentinel 2 (2017–2019) and Landsat 8 (2014–2019) for all the paddy rice fields in Guangdong province (APRFG), China. The ATOs of Landsat 8 showed relatively stable observations compared to the Sentinel 2, and the per-field ACFOs of Sentinel 2 and Landsat 8 were unevenly distributed. The MCFOs varied on a monthly basis, but in general, the MCFOs were greater between August and December than between January and July. Additionally, the AP of usable ACFOs with 52.1% (Landsat 8) and 47.7% (Sentinel 2) indicated that these two satellite sensors provided markedly restricted observation capability for rice in the study area. Our findings are particularly important and useful in the tropics and subtropics, and the analysis has described cloud cover frequency and pervasiveness throughout different portions of the rice growing season, providing insight into how rice monitoring activities by using Sentinel 2 and Landsat 8 imagery in Guangdong would be impacted by cloud cover.


Sign in / Sign up

Export Citation Format

Share Document