scholarly journals Additive Effects of Intra-articular Injection of Growth Hormone and Hyaluronic Acid in Rabbit Model of Collagenase-induced Osteoarthritis

2010 ◽  
Vol 25 (5) ◽  
pp. 776 ◽  
Author(s):  
Sang Beom Kim ◽  
Dong Rak Kwon ◽  
Hyun Kwak ◽  
Yong Beom Shin ◽  
Hyun-jung Han ◽  
...  
1996 ◽  
Vol 09 (02) ◽  
pp. 60-5 ◽  
Author(s):  
N. Hope ◽  
P. Ghosh ◽  
S. Collier

SummaryThe aim of this study was to determine the effects of intra-articular hyaluronic acid on meniscal healing. Circular defects, 1.0 mm in diameter, were made in the anterior third of the medial meniscus in rabbits. In one joint, 0.4 ml hyaluronic acid (Healon®) was instilled, and in the contralateral (control) joint, 0.4 ml Ringer’s saline. Four rabbits were killed after four, eight and 12 weeks and the menisci examined histologically. By eight weeks most of the lesions had healed by filling with hyaline-like cartilage. Healing was not improved by hyaluronic acid treatment. The repair tissue stained strongly with alcian blue, and the presence of type II collagen, keratan sulphate, and chondroitin sulphate was demonstrated by immunohistochemical localisation. In contrast to the circular defects, longitudinal incisions made in the medial menisci of a further six rabbits did not show any healing after 12 weeks, indicating that the shape of the lesion largely determined the potential for healing.The effect of hyaluronic acid on meniscal healing was tested in a rabbit model. With one millimeter circular lesions in the medial meniscus, healing by filling with hyalinelike cartilage was not significantly affected by the application of hyaluronic acid intra-articularly at the time of surgery, compared to saline controls, as assessed histologically four, eight and 12 weeks after the operation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuqing Niu ◽  
Massimiliano Galluzzi ◽  
Ming Fu ◽  
Jinhua Hu ◽  
Huimin Xia

AbstractOne of the main challenges of tissue-engineered vascular prostheses is restenosis due to intimal hyperplasia. The aim of this study is to develop a material for scaffolds able to support cell growth while tolerating physiological conditions and maintaining the patency of carotid artery model. Tubular hyaluronic acid (HA)-functionalized collagen nanofibrous composite scaffolds were prepared by sequential electrospinning method. The tubular composite scaffold has well-controlled biophysical and biochemical signals, providing a good matrix for the adhesion and proliferation of vascular endothelial cells (ECs), but resisting to platelets adhesion when exposed to blood. Carotid artery replacement experiment from 6-week rabbits showed that the HA/collagen nanofibrous composite scaffold grafts with endothelialization on the luminal surface could maintain vascular patency. At retrieval, the composite scaffold maintained good structural integrity and had comparable mechanical strength as the native artery. This study indicating that electrospun scaffolds combined with cells may become an alternative to prosthetic grafts for vascular reconstruction. Graphical Abstract


1987 ◽  
Vol 253 (5) ◽  
pp. E508-E514
Author(s):  
J. Weiss ◽  
M. J. Cronin ◽  
M. O. Thorner

Growth hormone (GH) is secreted as pulses in vivo. To understand the signals governing this periodicity, we have established a perifusion-based model of pulsatile GH release. Male rat anterior pituitaries were dispersed and perifused with pulses of human growth hormone-releasing factor-(1--40) (GHRF), with or without a continuous or discontinuous somatostatin tonus. An experiment was composed of a 1-h base-line collection followed by four 3-h cycles; each contained single or paired 10-min infusion(s) of 3 nM GHRF. In testing the impact of somatostatin, the protocol was identical except that 0.3 nM somatostatin was added 30 min into the base-line period and then was either continued throughout the study or withdrawn during the periods of GHRF infusion. GH base lines with somatostatin were lower than vehicle base lines (P less than 0.05). GHRF pulses generated consistent peaks of GH release between 200 and 300 ng. min-1. (10(7) cells)-1, and these peaks were not altered by continuous somatostatin. In contrast, withdrawal of somatostatin during GHRF administration elicited markedly higher GH peaks (P less than 0.05) and more total GH release (P less than 0.05). This response could not be accounted for by the additive effects of GHRF and somatostatin withdrawal.


2004 ◽  
Vol 424 ◽  
pp. 266-271 ◽  
Author(s):  
Stephen Mendelson ◽  
Paul Wooley ◽  
David Lucas ◽  
David Markel

2013 ◽  
Vol 31 (8) ◽  
pp. 1255-1259 ◽  
Author(s):  
Majdi Massarwi ◽  
Galia Gat-Yablonski ◽  
Biana Shtaif ◽  
Moshe Phillip ◽  
Mati Berkovitch

2004 ◽  
Vol 286 (3) ◽  
pp. E488-E494 ◽  
Author(s):  
C. B. Djurhuus ◽  
C. H. Gravholt ◽  
S. Nielsen ◽  
S. B. Pedersen ◽  
N. Møller ◽  
...  

Growth hormone (GH) and cortisol are important to ensure energy supplies during fasting and stress. In vitro experiments have raised the question whether GH and cortisol mutually potentiate lipolysis. In the present study, combined in vivo effects of GH and cortisol on adipose and muscle tissue were explored. Seven lean males were examined four times over 510 min. Microdialysis catheters were inserted in the vastus lateralis muscle and in the subcutaneous adipose tissue of the thigh and abdomen. A pancreatic-pituitary clamp was maintained with somatostatin infusion and replacement of GH, insulin, and glucagon at baseline levels. At t = 150 min, administration was performed of NaCl (I), a 2 μg·kg-1·min-1hydrocortisone infusion (II), a 200-μg bolus of GH (III), or a combination of II and III (IV). Systemic free fatty acid (FFA) turnover was estimated by [9,10-3H]palmitate appearance. Circulating levels of glucose, insulin, and glucagon were comparable in I-IV. GH levels were similar in I and II (0.50 ± 0.08 μg/l, mean ± SE). Peak levels during III and IV were ∼9 μg/l. Cortisol levels rose to ∼900 nmol/l in II and IV. Systemic (i.e., palmitate fluxes, s-FFA, s-glycerol) and regional (interstitial adipose tissue and skeletal muscle) markers of lipolysis increased in response to both II and III. In IV, they were higher and equal to the isolated additive effects of the two hormones. In conclusion, we find that GH and cortisol stimulate systemic and regional lipolysis independently and in an additive manner when coadministered. On the basis of previous studies, we speculate that the mode of action is mediated though different pathways.


Sign in / Sign up

Export Citation Format

Share Document