Rancang Bangun Mekanisme Fess Sebagai Alat Pembanding Pengaruh Geometri Flywheel Terhadap Energi Kinetik Yang Dihasilkan

2019 ◽  
Vol 8 (02) ◽  
pp. 1-6
Author(s):  
Adhe Anggry ◽  
Yuli Dharta ◽  
Andri Wiguna ◽  
Armada Armada ◽  
Ririn Martasari

Recent days, more and more people are becoming interested in "free-energy". "Free-energy" means the energy sources used freely without to pay. The sources of "free-energy" are sunlight, rainfall, wind energy, wave power, and tidal power. There are other sources of power such as gravity, electrical charge in the atmosphere and ionosphere, and a mass. FESS (Flywheel Energy Storage System) is an attempt to store kinetic energy generated from the rotation flywheel in which the electrical power output from the generator as an input to the motor. Mass flywheel greatly affects the amount of power generated by a generator which will serve as a flywheel device or distributors of energy while at the induction generator to eventually convert mechanical energy into electrical energy and vice versa. In this system design becomes very important for the flywheel can store the kinetic energy. This research aims to design and build mechanisms as a means of comparison FESS flywheel effect of the geometry of the kinetic energy generated. The research method is done by making three different geometric design flywheels, and then analyzed with the help of FESS. From the experimental results, flywheel 1 with a ringtype web-concave generate kinetic energy of 312.30 J and specific energy of 31.23 J / kg, at the flywheel 2 which is type-straight arm kinetic energy gained by 316.73 J and energy specific of 31.67 J / kg and flywheel 3 with a ring-type web-straight kinetic energy obtained by 284.997 J and specific energy of 28.49 J / kg. From the research data we can conclude that each design geometry flywheel has a different contribution to the performance of energy storage.

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5170
Author(s):  
Jürgen Marchgraber ◽  
Wolfgang Gawlik

Microgrids are small scale electrical power systems that comprise distributed energy resources (DER), loads, and storage devices. The integration of DER into the electrical power system basically allows the clustering of small parts of the main grid into Microgrids. Due to the increasing amount of renewable energy, which is integrated into the main grid, high power fluctuations are expected to become common in the next years. This carries the risk of blackouts to be also more likely in the future. Microgrids hold the potential of increasing reliability of supply, since they are capable of providing a backup supply during a blackout of the main grid. This paper investigates the black-starting and islanding capabilities of a battery energy storage system (BESS) in order to provide a possible backup supply for a small part of the main grid. Based on field tests in a real Microgrid, the backup supply of a residential medium voltage grid is tested. Whereas local wind turbines within this grid section are integrated into this Microgrid during the field test, the supply of households is reproduced by artificial loads consisting of impedance- and motor loads, since a supply of real households carries a high risk of safety issues and open questions regarding legal responsibility. To operate other DER during the island operation of such a Microgrid, control mechanisms have to ensure the power capabilities and energy reserves of the BESS to be respected. Since the operation during a backup supply of such a Microgrid requires a simple implementation, this paper presents a simple master–slave control approach, which influences the power output of other DER based on frequency characteristics without the need for further communication. Besides the operation of other DER, the capability to handle load changes during island operation while ensuring acceptable power quality is crucial for such a Microgrid. With the help of artificial loads, significant load changes of the residential grid section are reproduced and their influence on power quality is investigated during the field tests. Besides these load changes, the implementation and behavior of the master–slave control approach presented in this paper is tested. To prepare these field tests, simulations in Matlab/Simulink are performed to select appropriate sizes for the artificial loads and to estimate the expected behavior during the field tests. The field tests prove that a backup supply of a grid section during a blackout of the main grid by a BESS is possible. By creating the possibility of operating other DER during this backup supply, based on the master–slave control approach presented in this paper, the maximum duration for this backup supply can be increased.


2013 ◽  
Vol 284-287 ◽  
pp. 1141-1145
Author(s):  
Pavel Drabek ◽  
Lubos Streit

This paper presents research motivated by industrial demand for energy storage system for city transport vehicles. The kinetic energy is accumulated into the supercapacitor during vehicle braking. This energy can be used to accelerating in next time. It is important to save the energy in the vehicles, which accelerate very often.


Sign in / Sign up

Export Citation Format

Share Document