Combined effects of temperature and hypoxia shape female brooding behaviors and the early ontogeny of the Chilean kelp crab Taliepus dentatus

2020 ◽  
Vol 646 ◽  
pp. 93-107
Author(s):  
S Baldanzi ◽  
D Storch ◽  
M Fusi ◽  
N Weidberg ◽  
A Tissot ◽  
...  

The ecophysiology of marine ectotherms is regulated by the interaction of temperature with environmental drivers, such as dissolved oxygen (DO). The combination of low levels of DO and temperature in the ocean affects physiological and behavioral responses, especially in early life history traits of marine species. Here, we aimed to investigate the combined effect of ecologically relevant values of temperature and DO on female brooding behavior as well as on the early ontogeny of the Chilean kelp crab Taliepus dentatus. In a laboratory experiment, after acclimation and mating of females and males in constant temperatures (11 or 14°C), we exposed brooding females to 1 of 2 temperatures (11 or 14°C) and 1 of 2 DO levels (normoxia or cycling hypoxia). We tested the effects of these 4 treatments on embryo and larval sizes, embryo developmental time, female brooding behavior (i.e. embryo ventilation), larval hatching (i.e. number of hatched larvae), Zoea 1 survival to starvation, and swimming speed. We found a negative effect of temperature on the size of early embryos, but no interactions were detected in embryo size during development. High temperature and low DO increased female brooding behavior and larval size, reduced the number of hatched larvae, and affected larval swimming speed. Embryo development time and larval survival were negatively affected by temperature. These results suggest that an increasing frequency of hypoxic events, combined with ocean warming, might have important consequences on marine invertebrate brooders, affecting female fecundity, larval performance and, potentially, their dispersal ability even well within their optimal thermal range.

2020 ◽  
Vol 652 ◽  
pp. 33-47
Author(s):  
AN Gangur ◽  
DJ Marshall

Most marine invertebrate larvae either feed or rely on reserves provisioned by parents to fuel development, but facultative feeders can do both. Food availability and temperature are key environmental drivers of larval performance, but the effects of larval experience on performance later in life are poorly understood in facultative feeders. In particular, the functional relevance of facultative feeding is unclear. One feature to be tested is whether starved larvae can survive to adulthood and reproduce. We evaluated effects of larval temperature and food abundance on performance in a marine harpacticoid copepod, Tisbe sp. In doing so, we report the first example of facultative feeding across the entire larval stage for a copepod. In a series of experiments, larvae were reared with ad libitum food or with no food, and at 2 different temperatures (20 vs. 24°C). We found that higher temperatures shortened development time, and larvae reared at higher temperature tended to be smaller. Larval food consistently improved early performance (survival, development rate and size) in larvae, while starvation consistently decreased survival, increased development time and decreased size at metamorphosis. Nonetheless, a small proportion (3-9.5%, or 30-42.7% with antibiotics) of larvae survived to metamorphosis, could recover from a foodless larval environment, reach maturity and successfully reproduce. We recommend that future studies of facultative feeding consider the impact of larval environments on adult performance and ability to reproduce.


2015 ◽  
Vol 536 ◽  
pp. 221-227 ◽  
Author(s):  
PR Teske ◽  
J Sandoval-Castillo ◽  
M Sasaki ◽  
LB Beheregaray

2006 ◽  
Vol 16 (7) ◽  
pp. 717-726 ◽  
Author(s):  
Samira A. Mohamed ◽  
William A. Overholt ◽  
Robert A. Wharton ◽  
Slawomir A. Lux

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 769
Author(s):  
Suzanne Blatt ◽  
Kim Hiltz

(1) Background: The European apple sawfly, Hoplocampa testudinea Klug (Hymenoptera: Tenthredinidae), can be an economically important pest in eastern Canada and shows preference for apple cultivars in Nova Scotia, Canada. We hypothesized that this preference could be due to oviposition by female H. testudinea (preference-performance hypothesis) during the bloom period or differential larval survival during development due to fruitlet physicochemical properties. (2) Methods: Fifteen commercial and experimental apple (Malusdomestica Borkh.; Rosaceae) cultivars located at the Kentville Research and Development Centre (Kentville, Nova Scotia) were chosen and examined for H. testudinea oviposition, larval performance during fruitlet development, fruitlet physicochemical properties and damage assessment at harvest from 2016–2019, inclusive. (3) Results: H. testudinea showed significant cultivar preference during oviposition, during development and at harvest, but the ranking of these cultivars was not the same throughout the season. Total impact by H. testudinea was consistent for most cultivars over multiple years of the study. (4) Conclusion: Correlation of oviposition with damage provided weak evidence for the preference-performance hypothesis. We propose that this relationship is weak due to differential survival of larvae during development.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 633
Author(s):  
Dingli Wang ◽  
Qiyun Wang ◽  
Xiao Sun ◽  
Yulin Gao ◽  
Jianqing Ding

Conspecific aboveground and belowground herbivores can interact with each other, mediated by plant secondary chemicals; however, little attention has been paid to the interaction between leaf feeders and tuber-feeders. Here, we evaluated the effect of the foliar feeding of P. operculella larvae on the development of conspecific larvae feeding on harvested tubers by determining the nutrition and defense metabolites in the whole plant (leaf, root and tuber). We found that leaf feeding negatively affected tuber larval performance by increasing the female larval developmental time and reducing the male pupal weight. In addition, aboveground herbivory increased α-chaconine and glycoalkaloids in tubers and α-solanine in leaves, but decreased α-chaconine and glycoalkaloids in leaves. Aboveground herbivory also altered the levels of soluble sugar, soluble protein, starch, carbon (C), nitrogen (N), as well as the C:N ratio in both leaves and tubers. Aboveground P. operculella infestations could affect the performance of conspecific larvae feeding on harvested tubers by inducing glycoalkaloids in the host plant. Our findings indicate that field leaf herbivory should be considered when assessing the quality of potato tubers and their responses to pests during storage.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 228 ◽  
Author(s):  
Hannalene Du Plessis ◽  
Marie-Louise Schlemmer ◽  
Johnnie Van den Berg

The fall armyworm (Spodoptera frugiperda) is a pest of tropical origin which recently invaded Africa, the Far East and Australia. Temperature, therefore, plays an important role in its invasion biology, since this pest does not go into diapause. The aim of this study was to determine the development rate of S. frugiperda at different temperatures and to calculate the number of degree-days (°D) required for each stage to complete its development. This study was conducted at five different temperatures—18, 22, 26, 30 and 32 ± 1 °C. Larvae were reared individually in Petri dishes with sweetcorn kernels provided as food. The development rate of S. frugiperda increased linearly with increasing temperatures between 18 and 30 °C and larval survival was the highest between 26 and 30 °C. The optimal range for egg, larval and egg-to-adult development was between 26 and 30 °C. The optimum temperature with the fastest larval development rate and lowest mortality was at 30 °C. The pupal development period ranged between 7.82 and 30.68 days (32–18 °C). The minimum temperature threshold for egg and larva development was 13.01 and 12.12 °C, respectively, 13.06 °C for pupae and 12.57 °C for egg-to-adult development. Degree-day requirements for the development of the respective life cycle stages of S. frugiperda were 35.68 ± 0.22 for eggs, 204.60 ± 1.23 °D for larvae, 150.54 ± 0.93 °D for pupae and 391.61 ± 1.42 °D for egg-to-adult development.


2015 ◽  
Vol 81 (5) ◽  
pp. 891-897 ◽  
Author(s):  
Yang-Su Kim ◽  
Darys Isabel Delgado ◽  
Ing. Amado Cano ◽  
Yoshifumi Sawada

1983 ◽  
Vol 115 (6) ◽  
pp. 663-666 ◽  
Author(s):  
Roy C. Beckwith

AbstractMortality of neonatal Douglas-fir tussock moth larvae varied from 0% to 100% depending on the rearing temperature and duration of food deprivation. Lower temperatures apparently favor larval survival under starvation conditions. For each period of food deprivation, mortality occurs earlier as the temperature increases; this shift to earlier mortality was significant at P <.01. Some implications are discussed.


2020 ◽  
Vol 8 (3) ◽  
pp. 213 ◽  
Author(s):  
Il-Kweun Oh ◽  
Seung-Woo Lee

Deiratonotus japonicus (D. japonicus) inhabits isolated locations and upstream brackish waters from Kanagawa Prefecture to Okinawa Prefecture in Japan. This species faces the threat of extinction because of changing habitat conditions. Our previous studies have shown that its complete larval development from hatching to metamorphosis consists of five zoeal stages and one megalopal stage. In this study, the effect of temperature on the survival and growth of larval development in D. japonicus under controlled laboratory conditions of 13, 18, 23, 24, 25, and 26 °C was investigated by rearing larvae (30 PSU; 12:12 h light/dark cycle; fed a diet of Brachionus plicatilis rotundiformis and Artemia sp. nauplii). The survival rates and developmental periods were measured for each larval stage. The highest survival rates were obtained at 18–24 °C. Metamorphosis to megalopa occurred at 23–25 °C. There were rapid and synchronous developments at 25–26 °C but delayed and extended developments at 13 °C. The molting period decreased with increasing temperature. With decreasing temperature, the beginning of the development and duration of molting was prolonged. In addition, there were very low survival rates at 13 °C and 26 °C in all zoeal stages. Our results indicate that the early larval stages of D. japonicus are well adapted to 18–24 °C, the range observed in the estuarine marine environment of the Kita River during the breeding season. Optimum larval survival and growth were obtained at 23 °C. Temperature significantly affected the survival rate, developmental period, and molting of the larvae. The relationship between the cumulative periods of development from hatching through individual larval stages (y) and temperatures (T) was described as a power function (y = a × Tb).


1970 ◽  
Vol 15 ◽  
pp. 41-46 ◽  
Author(s):  
MM Rahman ◽  
W Islam ◽  
KN Ahmed

Xylocoris flavipes (Reuter) is one of the dominant predators of many stored product insect pest including Cryptolestes pusillus. The influence of temperature on predator development, survival and some selected life history parameters was determined. Eggs laid/female (27.27±2.52) and egg hatching rate (%) (88.25±2.19) were highest at 30°C and lowest at 20°C (5.43±1.19 and 30.79±4.63%) respectively but no eggs laid at 15°C. Mortality among immature stages (%) was highest (51.71±1.48) at 35°C and lowest (24.25c±1.14) at 25°C. Developmental times decreasing with the increasing of temperature. Maximum numbers of progeny/female/day (3.55±0.76) were produced at 25°C and minimum (0.83±0.04) were at 20°C.The sex ratios (% female) of X. flavipes were 47.04, 56.68, 51.66 and 50.07 for 20, 25, 30 and 35°C respectively. Survivorship of ovipositing females was highest at 25°C but lowest at 35°C respectively. Key words: Xylocoris flavipes, Cryptolestes pusillus, life history, temperature, developmental time   doi: 10.3329/jbs.v15i0.2201 J. bio-sci. 15: 41-46, 2007


Sign in / Sign up

Export Citation Format

Share Document