scholarly journals Remifentanil Protects Myocardium through Activation of AntiApoptotic Pathways of Survival in Ischemia-Reperfused Rat Heart

2010 ◽  
pp. 347-356
Author(s):  
H S Kim ◽  
J E Cho ◽  
S W Hong ◽  
S O Kim ◽  
J K Shim ◽  
...  

Remifentanil is a commonly used opioid in anesthesia with cardioprotective effect in ischemia-reperfused (I/R) heart. We evaluated the influence of remifentanil on myocardial infarct size and expressions of proteins involved in apoptosis in I/R rat heart following various time protocols of remifentanil administration. Artificially ventilated anesthetized Sprague-Dawley rats were subjected to a 30 min of left anterior descending coronary artery occlusion followed by 2 h of reperfusion. Rats were randomly assigned to one of five groups; Sham, I/R only, remifentanil preconditioning, postconditioning and continuous infusion group. Myocardial infarct size, the phosphorylation of ERK1/2, Bcl2, Bax and cytochrome c and the expression of genes influencing Ca2+ homeostasis were assessed. In remifentanil-administered rat hearts, regardless of the timing and duration of administration, infarct size was consistently reduced compared to I/R only rats. Remifentanil improved expression of ERK 1/2 and anti-apoptotic protein Bcl2, and expression of sarcoplasmic reticulum genes which were significantly reduced in the I/R rats only. Remifentanil reduced expression of pro-apoptotic protein, Bax and cytochrome c. These suggested that remifentanil produced cardioprotective effect by preserving the expression of proteins involved in anti-apoptotic pathways, and the expression of sarcoplasmic reticulum genes in I/R rat heart, regardless of the timing of administration.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Yun Wu ◽  
Yao Lu ◽  
Eric R Gross

Toxic reactive aldehydes are formed during ischemia-reperfusion. The ion channel transient receptor potential ankryin 1 (TRPA1) is irreversibly modified by reactive aldehydes which can cause calcium influx and cell death. Here we tested whether topically applied creams containing a reversible TRPA1 agonist could reduce myocardial infarct size. Male Sprague-Dawley rats 8-10 weeks age were subjected to an in vivo myocardial ischemia-reperfusion model of 30 minutes of left anterior descending (LAD) coronary artery ischemia followed by 2 hours reperfusion. Prior to ischemia, rats were untreated or had 1g of cream applied to the abdomen. The creams tested were IcyHot, Bengay, Tiger Balm, or preparation H (Fig. 1A). Hearts were negatively stained for the area at risk and the infarct size was determined by using TTC staining (Fig. 1B). A subset of rodents prior to receiving IcyHot also received an intravenous bolus of the TRPA1 antagonist TCS-5861528 (1mg/kg) or AP-18 (1mg/kg). Interestingly, both IcyHot and Bengay reduced myocardial infarct size compared to untreated rodents (Fig. 1C and 1D IcyHot: 41±3%*, Bengay: 50±2%* versus control 62±1%, n=6/group, *P<0.001). Both preparation H and Tiger Balm failed to reduce myocardial infarct size (Tiger Balm: 63±2%, preparation H 59±2%). Giving a TRPA1 antagonist prior to IcyHot also blocked the reduction in infarct size. Our additional data also indicates the methyl salicylate (mint) in IcyHot and Bengay is the agent that limits myocardial infarct size. Since IcyHot and Bengay are safely used by humans, targeting TRPA1 by using products such as these could be quickly translatable and widely used to reduce ischemia-reperfusion injury.


2008 ◽  
Vol 108 (4) ◽  
pp. 634-642 ◽  
Author(s):  
Weidong Gu ◽  
Franz Kehl ◽  
John G. Krolikowski ◽  
Paul S. Pagel ◽  
David C. Warltier ◽  
...  

Background A growing body of evidence indicates that statins decrease perioperative cardiovascular risk and that these drugs may be particularly efficacious in diabetes. Diabetes and hyperglycemia abolish the cardioprotective effects of ischemic preconditioning (IPC). The authors tested the hypothesis that simvastatin restores the beneficial effects of IPC during hyperglycemia through a nitric oxide-mediated mechanism. Methods Myocardial infarct size was measured in dogs (n = 76) subjected to coronary artery occlusion and reperfusion in the presence or absence of hyperglycemia (300 mg/dl) with or without IPC in separate groups. Additional dogs received simvastatin (20 mg orally daily for 3 days) in the presence or absence of IPC and hyperglycemia. Other dogs were pretreated with N-nitro-l-arginine methyl ester (30 mg intracoronary) with or without IPC, hyperglycemia, and simvastatin. Results Ischemic preconditioning significantly (P &lt; 0.05) reduced infarct size (n = 7, 7 +/- 2%) as compared with control (n = 7, 29 +/- 3%). Hyperglycemia (n = 7), simvastatin (n = 7), N-nitro-l-arginine methyl ester alone (n = 7), and simvastatin with hyperglycemia (n = 6) did not alter infarct size. Hyperglycemia (n = 7, 24 +/- 2%), but not N-nitro-l-arginine methyl ester (n = 5, 10 +/- 1%), blocked the protective effects of IPC. Simvastatin restored the protective effects of IPC in the presence of hyperglycemia (n = 7, 14 +/- 1%), and this beneficial action was blocked by N-nitro-l-arginine methyl ester (n = 7, 29 +/- 4%). Conclusions The results indicate that simvastatin restored the cardioprotective effects of IPC during hyperglycemia by nitric oxide-mediated signaling. The results also suggest that enhanced cardioprotective signaling could be a mechanism for statin-induced decreases in perioperative cardiovascular risk.


2002 ◽  
Vol 282 (6) ◽  
pp. H2018-H2023 ◽  
Author(s):  
Katsuya Tanaka ◽  
Franz Kehl ◽  
Weidong Gu ◽  
John G. Krolikowski ◽  
Paul S. Pagel ◽  
...  

Volatile anesthetics stimulate, but hyperglycemia attenuates, the activity of mitochondrial ATP-regulated K+ channels. We tested the hypothesis that diabetes mellitus interferes with isoflurane-induced preconditioning. Acutely instrumented, barbiturate-anesthetized dogs were randomly assigned to receive 0, 0.32, or 0.64% end-tidal concentrations of isoflurane in the absence or presence of diabetes (3 wk after administration of alloxan and streptozotocin) in six experimental groups. All dogs were subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium staining) was 29 ± 3% ( n = 8) of the left ventricular area at risk in control experiments. Isoflurane reduced infarct size (15 ± 2 and 13 ± 1% during 0.32 and 0.64% concentrations; n = 8 and 7 dogs, respectively). Diabetes alone did not alter infarct size (30 ± 3%; n = 8) but blocked the protective effects of 0.32% (27 ± 2%; n = 7) and not 0.64% isoflurane (18 ± 3%; n = 7). Infarct size was directly related to blood glucose concentrations in diabetic dogs, but this relationship was abolished by higher concentrations of isoflurane. The results indicate that blood glucose and end-tidal isoflurane concentrations are important determinants of infarct size during anesthetic-induced preconditioning.


1997 ◽  
Vol 273 (1) ◽  
pp. H220-H227 ◽  
Author(s):  
S. L. Hale ◽  
R. A. Kloner

This study tests the hypothesis that a 2-4 degrees C reduction in myocardial temperature, obtained by using topical regional hypothermia (TRH), reduces infarct size. Anesthetized rabbits received coronary artery occlusion and reperfusion. We cooled hearts in the TRH group by applying an ice bag directly over the risk zone; the control group received no intervention. Risk zone myocardial temperature (MT) in the TRH group was reduced at occlusion by 2 degrees C from baseline and after 5 min of occlusion by 3.6 degrees C. In the control group, MT in the risk region remained within 0.3 degree C of baseline. The ischemic area was similar in both groups, yet infarct size in the TRH group was reduced by an average of 65% compared with the control group. Infarct size closely correlated with MT in the risk region at the time of occlusion. In a second protocol in which all hearts were paced, infarct size was 21% of the risk region in TRH hearts compared with 44% in controls. These results strongly support the important role of MT in the progression of necrosis and demonstrate that the application of local cooling to the risk region profoundly reduces myocardial infarct size.


2002 ◽  
Vol 97 (6) ◽  
pp. 1485-1490 ◽  
Author(s):  
Katsuya Tanaka ◽  
Dorothee Weihrauch ◽  
Franz Kehl ◽  
Lynda M. Ludwig ◽  
John F. LaDisa ◽  
...  

Background Reactive oxygen species (ROS) contribute to myocardial protection during ischemic preconditioning, but the role of the ROS in protection against ischemic injury produced by volatile anesthetics has only recently been explored. We tested the hypothesis that ROS mediate isoflurane-induced preconditioning in vivo. Methods Pentobarbital-anesthetized rabbits were instrumented for measurement of hemodynamics and were subjected to a 30 min coronary artery occlusion followed by 3 h reperfusion. Rabbits were randomly assigned to receive vehicle (0.9% saline), or the ROS scavengers N-acetylcysteine (NAC; 150 mg/kg) or N-2-mercaptopropionyl glycine (2-MPG; 1 mg. kg(-1).min(-1)), in the presence or absence of 1.0 minimum alveolar concentration (MAC) isoflurane. Isoflurane was administered for 30 min and then discontinued 15 min before coronary artery occlusion. A fluorescent probe for superoxide anion production (dihydroethidium, 2 mg) was administered in the absence of the volatile anesthetic or 5 min before exposure to isoflurane in 2 additional groups (n = 8). Myocardial infarct size and superoxide anion production were assessed using triphenyltetrazolium staining and confocal fluorescence microscopy, respectively. Results Isoflurane (P &lt; 0.05) decreased infarct size to 24 +/- 4% (mean +/- SEM; n = 10) of the left ventricular area at risk compared with control experiments (43 +/- 3%; n = 8). NAC (43 +/- 3%; n = 7) and 2-MPG (42 +/- 5%; n = 8) abolished this beneficial effect, but had no effect on myocardial infarct size (47 +/- 3%; n = 8 and 46 +/- 3; n = 7, respectively) when administered alone. Isoflurane increased superoxide anion production as compared with control experiments (28 +/- 12 -6 +/- 9 fluorescence units; P &lt; 0.05). Conclusions The results indicate that ROS produced following administration of isoflurane contribute to protection against myocardial infarction in vivo.


2003 ◽  
Vol 98 (3) ◽  
pp. 705-711 ◽  
Author(s):  
Lynda M. Ludwig ◽  
Hemal H. Patel ◽  
Garrett J. Gross ◽  
Judy R. Kersten ◽  
Paul S. Pagel ◽  
...  

Background Adenosine triphosphate-regulated potassium channels mediate protection against myocardial infarction produced by volatile anesthetics and opioids. We tested the hypothesis that morphine enhances the protective effect of isoflurane by activating mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors. Methods Barbiturate-anesthetized rats (n = 131) were instrumented for measurement of hemodynamics and subjected to a 30 min coronary artery occlusion followed by 2 h of reperfusion. Myocardial infarct size was determined using triphenyltetrazolium staining. Rats were randomly assigned to receive 0.9% saline, isoflurane (0.5 and 1.0 minimum alveolar concentration [MAC]), morphine (0.1 and 0.3 mg/kg), or morphine (0.3 mg/kg) plus isoflurane (1.0 MAC). Isoflurane was administered for 30 min and discontinued 15 min before coronary occlusion. In eight additional groups of experiments, rats received 5-hydroxydecanoic acid (5-HD; 10 mg/kg) or naloxone (6 mg/kg) in the presence or absence of isoflurane, morphine, and morphine plus isoflurane. Results Isoflurane (1.0 MAC) and morphine (0.3 mg/kg) reduced infarct size (41 +/- 3%; n = 13 and 38 +/- 2% of the area at risk; n = 10, respectively) as compared to control experiments (59 +/- 2%; n = 10). Morphine plus isoflurane further decreased infarct size to 26 +/- 3% (n = 11). 5-HD and naloxone alone did not affect infarct size, but abolished cardioprotection produced by isoflurane, morphine, and morphine plus isoflurane. Conclusions Combined administration of isoflurane and morphine enhances the protection against myocardial infarction to a greater extent than either drug alone. This beneficial effect is mediated by mitochondrial adenosine triphosphate-regulated potassium channels and opioid receptors in vivo.


Sign in / Sign up

Export Citation Format

Share Document