scholarly journals Erythropoiesis- and Thrombopoiesis-Characterizing Parameters in Adenosine A3 Receptor Knock-Out Mice

2013 ◽  
pp. 305-311 ◽  
Author(s):  
M. HOFER ◽  
M. POSPÍŠIL ◽  
L. DUŠEK ◽  
Z. HOFEROVÁ ◽  
L. WEITEROVÁ ◽  
...  

Influence of the regulatory system mediated by adenosine A3 receptors on the functioning of erythropoiesis and thrombopoiesis was studied by means of evaluation of the numbers and attributes of peripheral blood erythrocytes and platelets, as well as of erythroid bone marrow progenitor cells in adenosine A3 receptor knock-out (Adora3tm1Jbsn/Adora3tm1Jbsn, A3AR(-/-)) mice and their wild-type C57BL/6 counterparts, both males and females. Minor but statistically significant disturbances in the properties of erythrocytes, namely in the parameters of mean erythrocyte volume and mean erythrocyte hemoglobin were observed in A3AR(-/-) mice. In addition, adenosine A3 receptor knock-out mice were found to exhibit an expressive, statistically significant decrease of their blood platelet count, amounting to 17 % and 21 % in males and females, respectively. This decrease in platelet levels was accompanied by a significant 17 % decline in the plateletcrit in both sexes. The obtained data can help to define therapeutic applications based on the principle of adenosine receptor signaling.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 883-883
Author(s):  
Elisabeth Præstekjær Cramer ◽  
Sara Louise Dahl ◽  
Björn Rozell ◽  
Kasper Jermiin Knudsen ◽  
Kim Thomsen ◽  
...  

Abstract Introduction NGAL/lipocalin-2 is a siderophore-binding protein stored in high amounts in specific granules of neutrophils. In addition, expression and constitutive secretion of lipocalin-2 can be induced in macrophages and epithelial cells under inflammatory conditions. In mice, lipocalin-2 is furthermore an acute phase-protein. Siderophores are the strongest iron chelators known and are produced by certain microorganisms to retrieve soluble iron from the host. By preventing uptake of siderophore bound iron, lipocalin-2 is bacteriostatic to bacteria that are dependent on this mechanism for uptake of iron. In accordance, lipocalin-2 knock-out mice are susceptible to infection by such bacteria. It is, however, not known whether it is the induced production of lipocalin-2 in epithelial cells and liver or the delivery of lipocalin-2 from infiltrating myeloid cells (neutrophils and macrophages) that is most important for these mechanisms of host defense against invading pathogens. Methods To study the contributions of lipocalin-2 from epithelial cells and liver compared to infiltrating myeloid cells, we used a Klebsiella pneumoniae lung infection model in C57BL/6 mice with chimeric expression of lipocalin-2. Bone marrow transplantation of lethally irradiated mice generated wild type-mice with a lipocalin-2 knock-out bone marrow (WT/KO) expressing lipocalin-2 in epithelium and liver but not in myeloid cells, and conversely knock out-mice with wild-type bone marrow (KO/WT) expressing lipocalin-2 in myeloid cells and not in epithelium and liver. Wild-type mice transplanted with wild-type bone marrow (WT/WT) and knock-out mice transplanted with knock-out bone marrow (KO/KO) were also generated. After 7 weeks of reconstitution, mice were nasally challenged with K. pneumoniae for induction of pneumonia and potential dissemination of the infection. The mice were sacrificed twenty-four hours after inoculation and examined. Results Lipocalin-2 levels in broncho alveolar lavage (BAL) fluid were comparable between WT/KO and KO/WT mice. Consistent with this, no difference in bacterial counts (CFU) in BAL fluid was seen. No differences in spleen CFUs were evident between the two chimeric subgroups WT/KO and KO/WT despite a quantitatively larger mean lipocalin-2 plasma level in WT/KO mice (almost 50 times) derived from epithelium and liver compared to the contribution from myeloid cells in KO/WT mice. However, mean CFU in spleen homogenates from KO/KO mice were more than 870 times higher compared to WT/WT mice. Both the lipocalin-2 contribution from myeloid cells and from epithelium and liver appeared to be indispensable judged by the higher spleen CFUs in mice lacking lipocalin-2 from either of the two compartments. Lipocalin-2 mRNA in the liver was present in equal amounts in mice with wild-type background despite the presence or absence of lipocalin-2 in the myeloid cells. No differences in neutrophil influx to the lungs were seen between groups as determined by MPO ELISA on lung homogenates. We conclude that lipocalin-2 derived both from myeloid cells and from epithelium and liver is required for full resistance to a siderophore-producing pathogen. Despite the higher levels of plasma lipocalin-2 in WT/KO mice compared to KO/WT mice, their bacteriostatic capacity is equal. The induction of lipocalin-2 in the liver is not dependent on the presence of lipocalin-2 in the myeloid cells, just as the migration of neutrophils to the infected lung is not, thus refuting a recent report that lipocalin-2 affects neutrophil migration. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 821-821
Author(s):  
Jonas S. Jutzi ◽  
A Gruender ◽  
Konrad Aumann ◽  
Heike L. Pahl

Abstract Background: We have described overexpression of the transcription factor NF-E2 in MPN patients and shown that elevated NF-E2 levels cause a MPN phenotype in transgenic mice. This includes thrombocytosis, leukocytosis, splenomegaly as well as an expansion of the stem- and progenitor cell compartments in the bone marrow. Recently, we have shown that, counterintuitively for a transcription factor, NF-E2 is located exclusively in the cytoplasm in the vast majority of erythroid cells in the bone marrow (85%). Patients with PMF show a statistically highly significant elevation in the proportion of cells displaying nuclear NF-E2 compared to either healthy controls or ET and PV patients. However, the molecular mechanisms regulating the subcellular localization of NF-E2 and its aberrant localization in PMF remain to be investigated. The E3 ubiquitin ligase ITCH has been postulated to stabilize and retain NF-E2 in the cytosol by protein-protein interaction and subsequent ubiquitinylation. The phenotype of ITCH deficient mice, however, has only been described briefly: animals display splenomegaly and an expansion of the stem cell compartment. The effect of ITCH deficiency on peripheral blood counts and on NF-E2 activity has not been determined. Aims: To characterize the phenotype of ITCH deficient mice and investigate the effect of ITCH deficiency on NF-E2 localization and activity. Methods: The peripheral blood and bone marrow of ITCH knock out mice as well as of heterozygous and wild-type control animals was analyzed: CBCs were determined every four weeks, stem- and progenitor populations in the bone marrow were assessed by 7-color FACS. Expression levels of NF-E2 and its targets genes were measured by quantitative PCR. Plasma cytokine concentrations were measured by Cytometric Bead Array. To determine the subcellular localization of NF-E2, immunohistochemical stainings of ITCH knock out BMs and wild-type controls were conducted. Results: At several consecutive time points ITCH knock out mice displayed a statistically significant elevation in WBC compared to heterozygous and wild-type littermates. Interestingly, both the percentage and the absolute number of eosinophils were significantly increased, some animals presenting with a drastic eosinophilia, the differential containing over 60% eosinophils. Furthermore, ITCH knock out mice display a significant decrease in platelet count, accompanied by an increase in platelet mass and volume, indicative of giant platelets. In the bone marrow ITCH deficient mice show a significant increase in the absolute number of Common Myeloid Progenitors (CMP). NF-E2 expression levels in the peripheral blood as well as in the bone marrow were highly statistically significantly increased compared to the levels measured in wild-type or heterozygous control mice. Consequently, the NF-E2 target gene Thromboxane Synthase A was statistically significantly overexpressed in peripheral blood of ITCH knock out mice. Plamsa concentrations of the inflammatory cytokines INF-γ and TNF were statistically significantly elevated, reaching two to threefold higher levels in ITCH knock out mice compared to wild-type littermates. Lastly, NF-E2 subcellular localization was altered in ITCH deficient mice, which display a significant increase in the proportion of megakaryocytes positive for nuclear NF-E2. Summary/Conclusions: Our data identify the E3 ubiquitin ligase ITCH as a regulator of NF-E2 activity. Impaired ITCH activity leads to both an NF-E2 overexpression and an increased nuclear NF-E2 localization that together drive overexpression of NF-E2 target genes. Furthermore, ITCH deficiency leads to higher inflammatory cytokine levels, comparable to those seen in PMF patients. All of these factors contribute to the resulting myeloproliferative phenotype with eosinophilia. Our data provide the first pathophysiological explanation of the pathognomonic symptom of ITCH deletion: pruritus in "itchy" mice. Moreover, given the aberrant NF-E2 localization in PMF patients, our data provide a possible mechanism and underscore the role of elevated NF-E2 activity in the pathophysiology of myeloproliferative neoplasms. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1197-1197 ◽  
Author(s):  
Selvi Ramasamy ◽  
Saez Borja ◽  
Subhankar Mukhopadhyay ◽  
Jianfeng Wang ◽  
Daching Ding ◽  
...  

Abstract Abstract 1197 TLE1 belongs to the Groucho/TLE family of co-repressors that act as master regulators during development affecting segmentation, neurogenesis, myogenesis, and multiple cell fate decisions. TLE1 modulate several major signaling pathways including Wnt and Notch, and specifically interacts with multiple transcription factors involved in hematopoiesis such TCF/LEF, HES1, RUNX1/AML. TLE1 has also been implicated in Crohn's disease via its interaction with NOD2, a regulator of NFkB. Our laboratory identified TLE1 as a likely AML tumor suppressor gene, commonly deleted in subgroups of AML, and others have shown its role as a tumor suppressor gene in myeloid and other hematopoietic malignancies. To better understand the role of TLE1 in hematopoiesis and leukemogenesis we created a line of Tle1 null mice. Tle1 null mice are born normally, but become progressively growth retarded by 3 days of life, with only 50% survival by 4 weeks as compared to heterozygous and wild type littermates. Abnormalities are observed in several organs systems including the hematopoietic system. We characterized the hematopoietic system in Tle1 knock out mice between two and 12 weeks of age. The bone marrow cellularity in the Tle1 knock out mice is comparable to the wild type mice at all time points examined. However, frequency of granulocyte macrophage progenitors in bone marrow mononuclear cells is significantly higher in the Tle1 knockout bone marrow compared to heterozygous and wild type mice. The proportion and number of myeloid cells as evidenced by Gr1, Mac1 expression are significantly higher in the bone marrow, spleen and blood of these knockout mice. There were significantly lower B-cells (B220+cells) in the Tle1 knockout mice compared to heterozygous and wild type. In colony forming assays there was a trend towards higher number of CFU-GM (7.66 vs 5), p=0.07) and CFU-M (27.16 vs 12.5, p=0.05) colonies from Tle1 null bone marrow as compared to wild type bone marrow. The spleens from four week and 17 months old Tle1 knockout mice had higher frequency of Gr1-negative, Mac1-positive and F4/80 positive macrophages. We also observed a significantly higher production of the inflammatory cytokines IL6 and TNFafrom peritoneal macrophages harvested from Tle1 null mice as compared to those from wild type mice in response to TLR ligand stimulation. To investigate the potential mechanism of this inhibitory effect of TLE1 on inflammation we demonstrated that TLE1 expression is able to block the nuclear translocation of NFkB in THP1 cells in response to LPS-K12 (p<0.05). In summary this work demonstrates that the lack of Tle1 expression biases hematopoiesis towards myeloid differentiation, a finding of potential relevance given the inactivation of TLE1 seen in subsets of myeloid malignancies. We further show that inactivation of Tle1 leads to an increase in macrophages primed to release increased inflammatory cytokines. This is notable given the recent observation that TLE1 may modulate the effects of NOD2 in the pathogenesis of Crohn's disease. These Tle1 null mice will allow the investigation of the potential role of TLE1 as a modulator of a variety of other inflammatory diseases. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
pp. 255-262
Author(s):  
M. HOFER ◽  
M. POSPÍŠIL ◽  
L. DUŠEK ◽  
D. KOMŮRKOVÁ

The purpose of the study was to describe and compare normal and 5-fluorouracil (5-FU)-suppressed hematopoiesis in adenosine A3 receptor knock-out (A3AR KO) mice and their wild-type (WT) counterparts. To meet the purpose, a complex hematological analysis comprising nineteen peripheral blood and bone marrow parameters was performed in the mice. Defects previously observed in the peripheral blood erythrocyte and thrombocyte parameters of the A3AR KO mice were confirmed. Compartments of the bone marrow progenitor cells for granulocytes/macrophages and erythrocytes were enhanced in the control, as well as in the 5-FU-administered A3AR KO mice. 5-FU-induced hematopoietic suppression, evaluated on day 2 after the administration of the cytotoxic drug, was found to be significantly deeper in the A3AR KO mice compared with their WT counterparts, as measured at the level of the bone marrow progenitor cells. The rate of regeneration, as assessed between days 2 and 7 after 5-FU administration, was observed in the population of the granulocyte/macrophage progenitor cells to be higher in the A3AR KO mice in comparison with the WT ones. The increased depth of 5-FU-induced suppression in the compartments of the hematopoietic progenitor cells in the A3AR KO mice represents probably a hitherto undescribed further consequence of the lack of adenosine A3 receptors and indicates its synergism with the pharmacologically induced cytotoxic action of 5-FU.


2022 ◽  
Vol 12 (4) ◽  
pp. 778-787
Author(s):  
Jiang-Hong An ◽  
Fu-Rong Qi ◽  
Xiao-Ya Cheng ◽  
Xun-Qi Liu ◽  
Pu Luo ◽  
...  

Background and purpose: Coronavirus disease 2019 (COVID-19) was spreading all over the world. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) primarily invades and infects the lungs of humans leading to COVID-19. Mild to severe clinical symptoms such as fever, cough, and shortness of breath were existed in those patients. One of the most common changes in these patients was abnormal blood routine. However, uncertainty remains regarding the dynamic characteristics of platelet in COVID-19 patients due to limited data. Therefore, we aimed to analyze the association between dynamic characteristics of blood platelet and disease severity, and to identify new monitoring indicators to treat the COVID-19 patients. Methods: In this cohort study, 398 COVID-19 patients treated in the Shenzhen Third People’s hospital from December 16, 2019 to March 26, 2020 were collected and participated. All data of participants including the clinical characteristics, imaging and laboratory information were collected. All patients included in our study were classified as four groups (mild, common, severe, and critical types) regarding clinical symptoms and relevant severe failures based on the Diagnosis Criteria. Platelet count was examined at the baseline and every 3–5 days during hospitalization. Results: The platelet count varied with clinical classifications. The platelet count in mild type was normal without significant fluctuation. While the blood platelet count of most common and severe patients had obvious fluctuations, showing as a dynamic change that first rose and then fell to the level at admission, which was consistent with the trend of lung inflammation. Bone marrow smears further showed that bone marrow hyperplasia was normal in mild, common and severe type patients, and megakaryocytes and their platelet-producing functions were not abnormal. Conclusions: Our results suggested that the dynamic changes of platelet count might be a predictor of lung inflammation alteration for COVID-19 patients. The changes in platelet count might be a responsive pattern secondary to lung inflammation. The function of bone marrow may be slightly affected by SARS-CoV-2 infection.


1978 ◽  
Vol 39 (02) ◽  
pp. 346-359 ◽  
Author(s):  
P D Winocour ◽  
M R Turner ◽  
T G Taylor ◽  
K A Munday

SummaryA major limitation to single-cell protein (SCP) as a human food is its high nucleic acid content, the purine moiety of which is metabolised to uric acid. Rats given a Fusarium mould as a source of SCP in diets containing oxonate, a uricase inhibitor, showed elevated plasma and kidney uric acid concentrations after 21 d, which were related to the level of dietary mould. ADP-induced and thrombin-induced platelet aggregation was greater in the hyperuricaemic rats than in controls and a progressive increase in aggregation with increasing levels of dietary mould was observed. Furthermore a time-lag, exceeding the life-span of rat platelets, was observed between the development of hyperuricaemia and the increase in aggregation. A similar time-lag was observed between the lowering of the hyperuricaemia and the reduction of platelet aggregation when oxonate was removed from the diet.If human platelets react to uric acid in the same manner as rat platelets this might explain the link that has been suggested between hyperuricaemia and ischaemic heart disease. In that event diets high in nucleic acids might be contra-indicated in people at risk from ischaemic heart disease.In rats given a low protein diet (50 g casein/kg) for 21 d ADP-induced and thrombin-induced platelet aggregation and whole blood platelet count were reduced compared with control animals receiving 200 g casein/kg diet but not in rats given 90 or 130 g casein/kg diet. A study of the time course on this effect indicated that the reduction both in aggregation tendency and in whole blood platelet count occurred after 4 d of feeding the low protein diet. These values were further reduced with time.


2007 ◽  
Vol 45 (05) ◽  
Author(s):  
A Schnur ◽  
P Hegyi ◽  
V Venglovecz ◽  
Z Rakonczay ◽  
I Ignáth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document