scholarly journals Intravenous Dexamethasone Attenuated Inflammation and Influenced Apoptosis of Lung Cells in an Experimental Model of Acute Lung Injury

2016 ◽  
pp. S663-S672 ◽  
Author(s):  
P. KOSUTOVA ◽  
P. MIKOLKA ◽  
S. BALENTOVA ◽  
M. ADAMKOV ◽  
M. KOLOMAZNIK ◽  
...  

Acute lung injury (ALI) is characterized by diffuse alveolar damage, inflammation, and transmigration and activation of inflammatory cells. This study evaluated if intravenous dexamethasone can influence lung inflammation and apoptosis in lavage-induced ALI. ALI was induced in rabbits by repetitive saline lung lavage (30 ml/kg, 9±3-times). Animals were divided into 3 groups: ALI without therapy (ALI), ALI treated with dexamethasone i.v. (0.5 mg/kg, Dexamed; ALI+DEX), and healthy non-ventilated controls (Control). After following 5 h of ventilation, ALI animals were overdosed by anesthetics. Total and differential counts of cells in bronchoalveolar lavage fluid (BAL) were estimated. Lung edema was expressed as wet/dry weight ratio. Concentrations of IL-1ß, IL-8, esRAGE, S1PR3 in the lung were analyzed by ELISA methods. In right lung, apoptotic cells were evaluated by TUNEL assay and caspase-3 immunohistochemically. Dexamethasone showed a trend to improve lung functions and histopathological changes, reduced leak of neutrophils (P<0.001) into the lung, decreased concentrations of pro-inflammatory IL-1β (P<0.05) and marker of lung injury esRAGE (P<0.05), lung edema formation (P<0.05), and lung apoptotic index (P<0.01), but increased immunoreactivity of caspase-3 in the lung (P<0.001). Considering the action of dexamethasone on respiratory parameters and lung injury, the results indicate potential of this therapy in ALI.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoying Huang ◽  
Jiangfeng Tang ◽  
Hui Cai ◽  
Yi Pan ◽  
Yicheng He ◽  
...  

The present study aimed to investigate the therapeutic effect of monoammonium glycyrrhizinate (MAG) on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and possible mechanism. Acute lung injury was induced in BALB/c mice by intratracheal instillation of LPS, and MAG was injected intraperitoneally 1 h prior to LPS administration. After ALI, the histopathology of lungs, lung wet/dry weight ratio, protein concentration, and inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The levels of tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in the BALF were measured by ELISA. The activation of NF-κB p65 and IκB-αof lung homogenate was detected by Western blot. Pretreatment with MAG attenuated lung histopathological damage induced by LPS and decreased lung wet/dry weight ratio and the concentrations of protein in BALF. At the same time, MAG reduced the number of inflammatory cells in lung and inhibited the production of TNF-αand IL-1βin BALF. Furthermore, we demonstrated that MAG suppressed activation of NF-κB signaling pathway induced by LPS in lung. The results suggested that the therapeutic mechanism of MAG on ALI may be attributed to the inhibition of NF-κB signaling pathway. Monoammonium glycyrrhizinate may be a potential therapeutic reagent for ALI.


2020 ◽  
Author(s):  
Xue-wei Pan ◽  
Li-xuan Xue ◽  
Qian-liu Zhou ◽  
Jia-zhi Zhang ◽  
Yu-jie Dai ◽  
...  

Abstract Background: Sepsis is a severe disorder leading to a clinically critical syndrome of multiple organ dysfunction syndrome. Most patients with sepsis will be associated with acute lung injury (ALI), which is an independent risk factors of organ failure and death in patients with sepsis at the same time. YiQiFuMai Lyophilized Injection (YQFM) is a modern traditional Chinese prescription preparation, which could ameliorate ALI induced by lipopolysaccharide (LPS) or fine particulate matter. The current study aimed to investigate the effect of YQFM on sepsis-induced ALI and the underlying mechanism.Methods: Male C57BL/6J mice were treated with cecal ligation and puncture (CLP) after tail intravenous injected with YQFM (1, 2 and 4 g/kg). The measurements of lung edema, evans blue leakage, myeloperoxidase content, inflammatory cells in bronchoalveolar lavage fluid, histopathological assay and expression of associated proteins were performed at 18 h after CLP.Results: The results illustrated that YQFM inhibited pulmonary edema and inflammatory response, thus ameliorated ALI in sepsis mice. Furthermore, the expression of TLR4 and phosphorylated Src was down-regulated, and the expression of p120-catenin and VE-cadherin was restored by YQFM administration.Conclusion: Our study suggested the therapeutic potential of YQFM on treating sepsis-induced ALI via regulating TLR4/Src/VE-cadherin/p120-catenin signaling pathway.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Bing Wan ◽  
Yan Li ◽  
Shuangshuang Sun ◽  
Yang Yang ◽  
Yanling LV ◽  
...  

Abstract The present study aimed to investigate the protective effects of ganoderic acid A (GAA) on lipopolysaccharide (LPS)-induced acute lung injury. In mouse model of LPS-induced acute lung injury, we found that GAA led to significantly lower lung wet-to-dry weight ratio and lung myeloperoxidase activity, and attenuated pathological damages. In addition, GAA increased superoxide dismutase activity, but decreased malondialdehyde content and proinflammatory cytokines levels in the bronchoalveolar lavage fluid. Mechanistically, GAA reduced the activation of Rho/ROCK/NF-κB pathway to inhibit LPS-induced inflammation. In conclusion, our study suggests that GAA attenuates acute lung injury in mouse model via the inhibition of Rho/ROCK/NF-κB pathway.


2020 ◽  
Author(s):  
Mei-Mei Liu ◽  
Jin Zhou ◽  
Dan Ji ◽  
Jun Yang ◽  
Yan-Ping Huang ◽  
...  

Abstract Background: The present study investigated the attenuating effect of diammonium glycyrrhizinate lipid ligand (DGLL) on acute lung injury (ALI) and pulmonary edema induced by lipopolysaccharide (LPS) in rats.Methods: Rat ALI model was established by LPS (10 mg/kg) intraperitoneal injection, and DGLL (30, 60, 120 mg/kg) was administrated orall 1 hour before LPS infusion. Six hours after LPS stimulation, lung injury was evaluated by histological staining. Pulmonary edema was evaluated by lung wet-dry weight ratio, the protein concentration of bronchoalveolar lavage fluid (BALF), and the evans blue (EB) extravasation in lung tissues. The expression of cytokines and adhesion molecules in lung tissues were detected by ELISA method. The myeloperoxidase (MPO) expression was detected by immunohistochemical staining. Western blot was used to detect the expression changes of the proteins associated with pulmonary inflammation and microvascular permeability.Results: DGLL significantly inhibited LPS induced ALI, manifested as attenuation of MPO positive cells and TNF-α, IL-6, ICAM-1 expression in rat lung tissue. In addition, DGLL abrogated LPS-induced pulmonary edema, decreased the protein concentration in BALF and EB extravasation. Meanwhile, DGLL inhibited the degradation of vascular endothelial cadherin (VE-Cadherin) and tight junction protein, including ZO-1, Occludin, and JAM-1.Conclusions: DGLL has an inhibitory effect on LPS-induced rat ALI, which is related to the inhibition of inflammatory cell infiltration and microvascular barrier disruption. These results provide a theoretical basis for DGLL in the potential clinical treatment of ALI.


2001 ◽  
Vol 8 (6) ◽  
pp. 1258-1262 ◽  
Author(s):  
Yutaka Kubota ◽  
Yoshinobu Iwasaki ◽  
Hidehiko Harada ◽  
Ichiro Yokomura ◽  
Mikio Ueda ◽  
...  

ABSTRACT Recent studies have shown that alveolar macrophages (AMs) not only act as phagocytes but also play a central role as potent secretory cells in various lung diseases, including pneumonia and acute respiratory distress syndrome. The behavior of AMs during disseminated candidiasis, however, is insufficiently elucidated. This study is the first to report disseminated candidiasis in AM-depleted mice and to analyze the effect of AMs on Candida-induced acute lung injury. While all AM-sufficient mice died by day 2 after infection withCandida albicans, no mortality was observed among AM-depleted mice. Unexpectedly, the CFU numbers of C. albicans isolated from the lungs of AM-depleted mice were significantly higher than those for C. albicans isolated from AM-sufficient mice. The lung wet-to-dry weight ratio was lower for AM-depleted mice than for AM-sufficient mice, although this difference was not significant. We found that bronchoalveolar lavage fluid (BALF) from AM-depleted mice in candidemia contained fewer neutrophils than BALF from AM-sufficient mice. In addition, myeloperoxidase activities in lung homogenates of AM-depleted mice were significantly lower than those in homogenates of AM-sufficient mice. A significant decrease in levels of murine macrophage inflammatory protein 2 (MIP-2), a potent chemoattractant for neutrophils, was noted in lung homogenates from AM-depleted mice compared with levels in homogenates from AM-sufficient mice. Immunohistochemical studies using anti-MIP-2 antibodies revealed that AMs were the cellular source of MIP-2 within the lung during candidemia. We observed that AM depletion decreased levels of AM-derived neutrophil chemoattractant, alleviated acute lung injury during candidemia, and prolonged the survival of mice in candidemia, even though clearance of C. albicans from the lungs was reduced.


2022 ◽  
Author(s):  
Yibin Zeng ◽  
Hongying Zhao ◽  
Tong Zhang ◽  
Chao Zhang ◽  
Yanni He ◽  
...  

Background: Punicalagin (Pun) is one of the main bioactive compounds in pomegranate peel, it possesses many properties, including antioxidant, anti-inflammation, and immunosuppressive activities. The study was aimed to investigate the protective effect and mechanisms of Pun on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice. Methods and Results: Forty-eight BALB/c male mice were used to establish ALI by intratracheal-instilled 2.4 mg/kg LPS, the mice were randomly divided into model and Pun (10, 20, 40 mg/kg) groups. The other twelve mice were intratracheal-instilled same volume of water as control. After 2 h of receiving LPS, mice were administrated drug through intraperitoneal injection. Lung index, histopathological changes, white blood cells and biomarkers in bronchoalveolar lavage fluid (BALF) were analyzed. The protein expression of total and phosphor p65, IκBα, ERK1/2, JNK and p38 in lung tissue was detected. The result showed that Pun could reduce the lung index and wet/dry weight ratio, improve lung histopathological injury. In addition, Pun decreased the inflammation cells and regulated the biomarkers in BALF. Furthermore, Pun dose-dependently reduced the phosphor protein levels of p65, IκBα, ERK1/2, JNK and p38 in lung tissue, which exhibited that the effect of Pun related to MAPKs pathway. More importantly, there is no toxicity was observed in the acute toxicity study of Pun. Conclusion: Pun improves LPS-induced ALI mainly through its anti-inflammatory properties, which is associated with NF-κB and MAPKs signaling pathways. The study implied that Pun maybe a potent agent against ALI in future clinic.


2017 ◽  
pp. S237-S245 ◽  
Author(s):  
P. KOSUTOVA ◽  
P. MIKOLKA ◽  
M. KOLOMAZNIK ◽  
S. REZAKOVA ◽  
A. CALKOVSKA ◽  
...  

Acute lung injury (ALI) is associated with deterioration of alveolar-capillary lining and transmigration and activation of inflammatory cells. Whereas a selective phosphodiesterase-4 (PDE4) inhibitor roflumilast has exerted potent anti-inflammatory properties, this study evaluated if its intravenous delivery can influence inflammation, edema formation, and respiratory parameters in rabbits with a lavage-induced model of ALI. ALI was induced by repetitive saline lung lavage (30 ml/kg). Animals were divided into 3 groups: ALI without therapy (ALI), ALI treated with roflumilast i.v. (1 mg/kg; ALI+Rofl), and healthy ventilated controls (Control), and were ventilated for following 4 h. Respiratory parameters (blood gases, ventilatory pressures, lung compliance, oxygenation indexes etc.) were measured and calculated regularly. At the end of experiment, animals were overdosed by anesthetics. Total and differential counts of cells in bronchoalveolar lavage fluid (BAL) were estimated microscopically. Lung edema was expressed as wet/dry lung weight ratio. Treatment with roflumilast reduced leak of cells (P<0.01), particularly of neutrophils (P<0.001), into the lung, decreased lung edema formation (P<0.01), and improved respiratory parameters. Concluding, the results indicate a future potential of PDE4 inhibitors also in the therapy of ALI.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xuanfei Li ◽  
Zheng Liu ◽  
He Jin ◽  
Xia Fan ◽  
Xue Yang ◽  
...  

Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Fang ◽  
Yuan Gao ◽  
Fen Liu ◽  
Rui Hou ◽  
Run-Lan Cai ◽  
...  

Shuang-Huang-Lian (SHL) is a common traditional Chinese preparation extracted fromLonicerae Japonicae Flos, Scutellariae Radix, andFructus Forsythiae. In this study, we demonstrate the anti-inflammatory and antioxidative effects of SHL on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. SHL reduced the lung wet/dry weight ratio, lowered the number of total cells in the bronchoalveolar lavage fluid, and decreased the myeloperoxidase activity in lung tissues 6 h after LPS treatment. It also inhibited the overproduction of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) in the bronchoalveolar lavage fluid. Histological studies demonstrated that SHL attenuated LPS-induced interstitial edema, hemorrhage, and the infiltration of neutrophils into the lung tissue. Moreover, SHL could also enhance the superoxide dismutase and catalase activities, increase the reduced glutathione content, and decrease the malondialdehyde content. The present results suggest that SHL possesses anti-inflammatory and antioxidative properties that may protect mice against LPS-induced ALI.


2018 ◽  
pp. S645-S654 ◽  
Author(s):  
P. KOSUTOVA ◽  
P. MIKOLKA ◽  
M. KOLOMAZNIK ◽  
S. BALENTOVA ◽  
M. ADAMKOV ◽  
...  

Damage of alveolar-capillary barrier, inflammation, oxidative injury, and lung cell apoptosis represent the key features of acute lung injury (ALI). This study evaluated if selective phosphodiesterase (PDE)-4 inhibitor roflumilast can reduce the mentioned changes in lavage-induced model of ALI. Rabbits with ALI were divided into 2 groups: ALI without therapy (A group) and ALI treated with roflumilast i.v. (1 mg/kg; A+R group). One group of healthy animals without ALI served as ventilated controls (C group). All animals were oxygen-ventilated for further 4 h. At the end of experiment, total and differential counts of cells in bronchoalveolar lavage fluid (BALF) and total and differential counts of white blood cells were estimated. Lung edema formation was assessed from determination of protein content in BALF. Pro-inflammatory cytokines (TNFα, IL-6 and IL-8) and markers of oxidation (3-nitrotyrosine, thiobarbituric-acid reactive substances) were detected in the lung tissue and plasma. Apoptosis of lung cells was investigated immunohistochemically. Treatment with roflumilast reduced leak of cells, particularly of neutrophils, into the lung, decreased concentrations of cytokines and oxidative products in the lung and plasma, and reduced lung cell apoptosis and edema formation. Concluding, PDE4 inhibitor roflumilast showed potent anti-inflammatory actions in this model of ALI.


Sign in / Sign up

Export Citation Format

Share Document