scholarly journals Histone Deacetylase Inhibition has Cardiac and Vascular Protective Effects in Rats With Pressure Overload Cardiac Hypertrophy

2019 ◽  
pp. 727-737 ◽  
Author(s):  
H. JUNG ◽  
E. LEE ◽  
I. KIM ◽  
J. SONG ◽  
G. KIM

Histone deacetylase (HDAC) inhibitors have shown beneficial effects in animal models of cardiovascular diseases. We hypothesized that HDAC inhibitor, sodium valproate (VPA), has cardiac and vascular protective effects in rats with pressure overload cardiac hypertrophy induced by transverse aortic constriction (TAC). Sections of the heart were visualized after hematoxylin and eosin staining, picrosirius red staining and immunohistochemistry. The expression of genes related to cardiac hypertrophy, fibrosis, and oxidative stress was determined by quantitative real-time polymerase chain reaction. The aortic ring tension analysis was conducted using both the ascending aorta and descending thoracic aorta. TAC increased the expression of hypertrophic, fibrotic, and oxidative stress genes, which was attenuated by VPA. In the ascending aorta with intact endothelium, there was a significant decrease in the relaxation response, which was recovered by VPA treatment. These results indicate that VPA has cardiac and vascular protective effects in rats with pressure overload cardiac hypertrophy.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hanna Jung ◽  
Eunjo Lee ◽  
Inkyeom Kim ◽  
Gun Jik Kim

The use of histone deacetylase (HDAC) inhibitor is a novel therapeutic strategy for cardiovascular disease. Studies have shown that many HDAC inhibitors have the ability to reduce the aortic remodeling in various animal models. We hypothesized that the HDAC inhibitor, MGCD0103 (MGCD), attenuates aortic remodeling in rats under pressure overload-induced by transverse aortic constriction (TAC). The aortic ring tension analysis was conducted using the thoracic aorta. Sections of the aorta were visualized after hematoxylin and eosin, trichrome, and Verhoeff-van Gieson staining, and immunohistochemistry. The expression of genes related to aortic remodeling (αSMA, Mmp2, and Mmp9) and angiotensin receptors (Agtr1 and Agtr2) was determined by quantitative real-time polymerase chain reaction. There was a significant decrease in relaxation of the aorta when treated with MGCD. Fibrosis of the aortic wall and expression of angiotensin receptors increased in TAC rats, which was attenuated by MGCD. These results indicate that MGCD, an HDAC inhibitor, attenuates aortic remodeling in rats with TAC-induced pressure overload rats and may serve as a potential therapeutic target of antiaortic remodeling in pressure overload-induced hypertension-related diseases.


2009 ◽  
Vol 15 (7) ◽  
pp. S166
Author(s):  
Miho Kitamura ◽  
Miyuki Kobara ◽  
Akiko Furumori ◽  
Kazuki Noda ◽  
Tatsuya Shiraishi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Zhang ◽  
Hai-Han Liao ◽  
Hong Feng ◽  
Shan-Qi Mou ◽  
Wen-Jing Li ◽  
...  

Objectives: Sestrin2 (Sesn2) has been demonstrated to be a cysteine sulfinyl reductase and protects cells from multiple stress insults, including hypoxia, endoplasmic reticulum stress, and oxidative stress. However, the roles and mechanisms of Sesn2 in pressure overload-induced mouse cardiac hypertrophy have not been clearly clarified. This study intended to investigate whether sestrin2 (Sesn2) overexpression could prevent pressure overload-induced cardiac hypertrophy via an AMPKα2 dependent pathway through conditional knockout of AMPKα2.Methods and results: Sesn2 expression was significantly increased in mice hearts at 2 and 4 weeks after aortic banding (AB) surgery, but decreased to 60–70% of the baseline at 8 weeks. Sesn2 overexpression (at 3, 6, and 9 folds) showed little cardiac genetic toxicity in transgenic mice. Cardiac dysfunctions induced by pressure overload were attenuated by cardiomyocyte-specific Sesn2 overexpression when measured by echocardiography and hemodynamic analysis. Results of HE and PSR staining showed that Sesn2 overexpression significantly alleviated cardiac hypertrophy and fibrosis in mice hearts induced by pressure overload. Meanwhile, adenovirus-mediated-Sesn2 overexpression markedly suppressed angiotensin II-induced neonatal rat cardiomyocyte hypertrophy in vitro. Mechanistically, Sesn2 overexpression increased AMPKα2 phosphorylation but inhibited mTORC1 phosphorylation. The cardiac protections of Sesn2 overexpression were also via regulating oxidative stress by enhancing Nrf2/HO-1 signaling, restoring SOD activity, and suppressing NADPH activity. Particularly, we first proved the vital role of AMPKα2 in the regulation of Sesn2 with AMPKα2 knockout (AMPKα2-/-) mice and Sesn2 transgenic mice crossed with AMPKα2-/-, since Sesn2 overexpression failed to improve cardiac function, inhibit cardiac hypertrophy and fibrosis, and attenuate oxidative stress after AMPKα2 knockout.Conclusion: This study uniquely revealed that Sesn2 overexpression showed little genetic toxicity in mice hearts and inhibited mTORC1 activation and oxidative stress to protect against pressure overload-induced cardiac hypertrophy in an AMPKα2 dependent pathway. Thus, interventions through promoting Sesn2 expression might be a potential strategy for treating pathological cardiac hypertrophy and heart failure.


2008 ◽  
Vol 14 (7) ◽  
pp. S162
Author(s):  
Akiko Furumori ◽  
Miyuki Kobara ◽  
Mihoko Matsumura ◽  
Tatsuya Shiraishi ◽  
Miho Kitamura ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Rong Wu ◽  
David Yin ◽  
Nataliya Sadekova ◽  
Christian F. Deschepper ◽  
Jacques de Champlain ◽  
...  

Objective. To evaluate the capacity of chronic ASA therapy to prevent cardiac alterations and increased oxidative stress in cardiomyopathic hamsters.Methods and Results. Male Syrian cardiomyopathic and age-matched inbred control hamsters received ASA orally from the age of 60 days. Animals were sacrificed at the age of 150, 250, and 350 days to evaluate the time course of cardiac hypertrophy and cardiovascular tissue superoxide anion (O2-) production. At the age of 150 days, the ventricular weight over body weight ratio, resting heart rate, and cardiovascularO2-production were much higher in cardiomyopathic hamsters than those in control. At the age of 250 days, in addition to the continual deterioration of these parameters with age, the blood pressure started to fall and the signs of heart failure appeared. In these cardiomyopathic hamsters, chronic ASA treatment (a) completely prevented elevatedO2-production and the NAD(P)H oxidase activity, (b) significantly slowed down the development of the cardiac hypertrophy and fibrosis.Conclusions. Chronic ASA treatment significantly prevents the deterioration of cardiac function and structure as well as the increased oxidative stress in the cardiomyopathic hamster. Our findings suggest that ASA presents a therapeutic potential to prevent cardiac dysfunction.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3267
Author(s):  
Steve Leu ◽  
Kay L. H. Wu ◽  
Wei-Chia Lee ◽  
You-Lin Tain ◽  
Julie Y. H. Chan

Recent studies demonstrated that metabolic syndrome and cardiovascular diseases could be elicited by developmental programming, which is regulated by prenatal nutritional and environmental stress. In this study, we utilized a rat model to examine the effect of excessive maternal fructose intake during pregnancy and lactation on cardiac development and progression of pressure overload-induced cardiac hypertrophy in offspring. Transverse aortic constriction (TAC) was performed on 3-month-old male offspring to induce ventricular pressure overload. Four weeks post-TAC, echocardiographic assessment as well as histopathological and biochemical examinations were performed on the myocardium of the offspring. Echocardiographic and gross examinations showed that heart weight, interventricular septal thickness in diastole (IVD; d), and left ventricular posterior wall thickness in diastole (LVPW; d) were elevated in offspring with TAC and further increased by maternal fructose exposure (MFE). However, the left ventricular ejection function was not significantly affected. Myocardial histopathological examination revealed that the indices of fibrosis and oxidative stress were higher in offspring with MFE and TAC than those in animals receiving either treatment. Molecular examinations on the myocardium demonstrated an MFE-induced upregulation of p38-MAPK signaling. Next generation sequence (NGS) analysis indicated a modulation of the expression levels of several cardiac hypertrophy-associated genes, including GPR22, Myh7, Nppa, P2RX4, and Npy by MFE. Subsequent RT-PCR indicated that MFE regulated the expression levels of genes responsive to cardiac hypertrophy (i.e., Myh-7, ANP) and oxidative stress (i.e., GR, GPx, and NQO-1). In conclusion, MFE during pregnancy and lactation modulated myocardial gene expression, increased oxidative stress, and exacerbated ventricular pressure overload-induced cardiac remodeling in rat offspring.


2020 ◽  
Vol 21 (8) ◽  
pp. 626-632 ◽  
Author(s):  
Dawei Liu ◽  
Qinghua Wu ◽  
Hongyi Liu ◽  
Changhu Lu ◽  
Chao Gu ◽  
...  

Background: The red-crowned crane (Grus japonensis) is one of the most vulnerable bird species in the world. Mycotoxins are toxic secondary metabolites produced by fungi and considered naturally unavoidable contaminants in animal feed. Our recent survey indicated that the mycotoxins had the potential to contaminate redcrowned crane’s regular diets in China. Objective: This experiment was conducted to investigate the protective effects of mycotoxin binder montmorillonite (Mont) on growth performance, serum biochemistry and oxidative stress parameters of the red-crowned crane. Methods: 16 red-crowned cranes were divided into four groups and fed one of the following diets; a selected diet, regular diet, or the selected diet or regular diet with 0.5% montmorillonite added to the diets. The cranes' parameters of performance, hematology, serum biochemistry and serum oxidative stress were measured. Results: Consuming regular diets decreased the average daily feed intake (ADFI), levels of haemoglobin (Hb), platelet count (PLT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), but increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK) and lactate dehydrogenase (LDH). The supplementation of 0.5% Mont provided protection for the red-crowned crane in terms of feed intake, serum biochemistry and oxidative stress. Moreover, Mont supplementation had no adverse effect on the health of red-crowned crane. Conclusions: Taken together, these findings suggested that the addition of dietary Mont is effective in improving the health of red-crowned crane.


Sign in / Sign up

Export Citation Format

Share Document