scholarly journals The Use of Egocentric and Allocentric Reference Frames in Static and Dynamic Conditions in Humans

2020 ◽  
pp. 787-801
Author(s):  
S MORARESKU ◽  
K VLCEK

The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.

Author(s):  
Steven M. Weisberg ◽  
Anjan Chatterjee

Abstract Background Reference frames ground spatial communication by mapping ambiguous language (for example, navigation: “to the left”) to properties of the speaker (using a Relative reference frame: “to my left”) or the world (Absolute reference frame: “to the north”). People’s preferences for reference frame vary depending on factors like their culture, the specific task in which they are engaged, and differences among individuals. Although most people are proficient with both reference frames, it is unknown whether preference for reference frames is stable within people or varies based on the specific spatial domain. These alternatives are difficult to adjudicate because navigation is one of few spatial domains that can be naturally solved using multiple reference frames. That is, while spatial navigation directions can be specified using Absolute or Relative reference frames (“go north” vs “go left”), other spatial domains predominantly use Relative reference frames. Here, we used two domains to test the stability of reference frame preference: one based on navigating a four-way intersection; and the other based on the sport of ultimate frisbee. We recruited 58 ultimate frisbee players to complete an online experiment. We measured reaction time and accuracy while participants solved spatial problems in each domain using verbal prompts containing either Relative or Absolute reference frames. Details of the task in both domains were kept as similar as possible while remaining ecologically plausible so that reference frame preference could emerge. Results We pre-registered a prediction that participants would be faster using their preferred reference frame type and that this advantage would correlate across domains; we did not find such a correlation. Instead, the data reveal that people use distinct reference frames in each domain. Conclusion This experiment reveals that spatial reference frame types are not stable and may be differentially suited to specific domains. This finding has broad implications for communicating spatial information by offering an important consideration for how spatial reference frames are used in communication: task constraints may affect reference frame choice as much as individual factors or culture.


1944 ◽  
Vol 11 (3) ◽  
pp. A149-A161
Author(s):  
Gabriel Kron

Abstract This paper presents equivalent circuits representing the partial differential equations of the theory of elasticity for bodies of arbitrary shapes. Transient, steady-state, or sinusoidally oscillating elastic-field phenomena may now be studied, within any desired degree of accuracy, either by a “network analyzer,” or by numerical- and analytical-circuit methods. Such problems are the propagation of elastic waves, determination of the natural frequencies of vibration of elastic bodies, or of stresses and strains in steady-stressed states. The elastic body may be non-homogeneous, may have arbitrary shape and arbitrary boundary conditions, it may rotate at a uniform angular velocity and may, for representation, be divided into blocks of uneven length in different directions. The circuits are developed to handle both two- and three-dimensional phenomena. They are expressed in all types of orthogonal curvilinear reference frames in order to simplify the boundary relations and to allow the solution of three-dimensional problems with axial and other symmetry by the use of only a two-dimensional network. Detailed circuits are given for the important cases of axial symmetry, cylindrical co-ordinates (two-dimensional) and rectangular co-ordinates (two- and three-dimensional). Nonlinear stress-strain relations in the plastic range may be handled by a step-by-step variation of the circuit constants. Nonisotropic bodies and nonorthogonal reference frames, however, require an extension of the circuits given. The circuits for steady-state stress and small oscillation phenomena require only inductances and capacitors, while the circuits for transients require also standard (not ideal) transformers. A companion paper deals in detail with numerical and experimental methods to solve the equivalent circuits.


2013 ◽  
Vol 36 (5) ◽  
pp. 556-556
Author(s):  
Kate A. Longstaffe ◽  
Bruce M. Hood ◽  
Iain D. Gilchrist

AbstractJeffery et al. accurately identify the importance of developing an understanding of spatial reference frames in a three-dimensional world. We examine human spatial cognition via a unique paradigm that investigates the role of saliency and adjusting reference frames. This includes work with adults, typically developing children, and children who develop non-typically (e.g., those with autism).


2021 ◽  
Author(s):  
Xiaoyang Long ◽  
Bin Deng ◽  
Jing Cai ◽  
Zhe Sage Chen ◽  
Sheng-Jia Zhang

ABSTRACTBoth egocentric and allocentric representations of space are essential to spatial navigation. Although some studies of egocentric coding have been conducted within and around the hippocampal formation, externally anchored egocentric spatial representations have not yet been fully explored. Here we record and identify two subtypes of border cell in the rat primary somatosensory cortex (S1) and secondary visual cortex (V2). Subpopulations of S1 and V2 border cells exhibit rotation-selective asymmetric firing fields in an either clockwise (CW) or counterclockwise (CCW) manner. CW- and CCW-border cells increase their firing rates when animals move unidirectionally along environmental border(s). We demonstrate that both CW- and CCW-border cells fire in an egocentric reference frame relative to environmental borders, maintain preferred directional tunings in rotated, stretched, dark as well as novel arenas, and switch their directional firings in the presence of multi-layer concentric enclosures. These findings may provide rotation-selective egocentric reference frames within a larger spatial navigation system, and point to a common computational principle of spatial coding shared by multiple sensory cortical areas.HighlightsEgocentric border cells are present in rat S1 and V2Subtypes of border cells display egocentric asymmetric codingEgocentric and allocentric streams coexist in sensory corticesRotation-selective asymmetric firing is robust with environmental manipulations


1972 ◽  
Vol 51 (2) ◽  
pp. 233-272 ◽  
Author(s):  
G. E. Mattingly ◽  
W. O. Criminale

The growth of small disturbances in a two-dimensional incompressible wake has been investigated theoretically and experimentally. The theoretical analysis is based upon inviscid stability theory wherein small disturbances are considered from both temporal and spatial reference frames. Through a combined stability analysis, in which small disturbances are permitted to amplify in both time and space, the relationship between the disturbance characteristics for the temporal and spatial reference frames is shown. In these analyses a quasi-uniform assumption is adopted to account for the continuously varying mean-velocity profiles that occur behind flat plates and thin airfoils. It is found that the most unstable disturbances in the wake produce transverse oscillations in the mean-velocity profile and correspond to growing waves that have a minimum group velocity.Experimentally, the downstream development of the wake of a thin airfoil and the wave characteristics of naturally amplifying small disturbances are investigated in a water tank. The disturbances that develop are found to produce transverse oscillations of the mean-velocity profile in agreement with the theoretical prediction. From the comparison of the experimental results with the predictions for the characteristics of the most unstable waves via the temporal and spatial analyses, it is concluded that the stability analysis for the wake is to be considered solely from the more realistic spatial viewpoint. Undoubtedly, this conclusion is also applicable to other highly unstable flows such as jets and free shear layers.In accordance with the disturbance vorticity distribution as determined from the spatial model, a description of the initial development of a vortex street is put forth that contrasts with the description given by Sato & Kuriki (1961).


2021 ◽  
pp. 1-32
Author(s):  
Kaian Unwalla ◽  
Daniel Goldreich ◽  
David I. Shore

Abstract Exploring the world through touch requires the integration of internal (e.g., anatomical) and external (e.g., spatial) reference frames — you only know what you touch when you know where your hands are in space. The deficit observed in tactile temporal-order judgements when the hands are crossed over the midline provides one tool to explore this integration. We used foot pedals and required participants to focus on either the hand that was stimulated first (an anatomical bias condition) or the location of the hand that was stimulated first (a spatiotopic bias condition). Spatiotopic-based responses produce a larger crossed-hands deficit, presumably by focusing observers on the external reference frame. In contrast, anatomical-based responses focus the observer on the internal reference frame and produce a smaller deficit. This manipulation thus provides evidence that observers can change the relative weight given to each reference frame. We quantify this effect using a probabilistic model that produces a population estimate of the relative weight given to each reference frame. We show that a spatiotopic bias can result in either a larger external weight (Experiment 1) or a smaller internal weight (Experiment 2) and provide an explanation of when each one would occur.


1977 ◽  
Vol 17 (04) ◽  
pp. 251-262 ◽  
Author(s):  
E.G. Woods ◽  
A.K. Khurana

Abstract Three-dimensional numerical models of bottom-water-drive reservoirs show delayed water breakthrough into individual wells when compared with observed well performance and individual-well coning models. This reservoir-model behavior results from masking of the well coning effect by volume-averaging pressure and saturation profiles around a well over a grid block with a large volume. The reservoir-simulator prediction of well performance can be improved by mathematically performance can be improved by mathematically transforming the production performance of a detailed well-coning model into a set of time-independent pseudorelative-permeability and capillary-pressure curves that then can be used in the reservoir model. A procedure for obtaining the required pseudofunctions is described and the results of their application in simple models and in a large reservoir-simulator model are shown. Introduction The prohibitive cost of numerical reservoir simulation with fine-grid definition models of large reservoirs has led to development of techniques whereby vertical saturation distribution and/or localized flow conditions in the vicinity of individual wells can be approximately accounted for in relatively coarse-grid models at an acceptable incremental cost. In particular, vertical cross-section models under capillary and gravity equilibrium have been used to derive pseudorelative permeabilities and capillary pressures for use in two-dimensional, areal models to simulate the average vertical distribution of flow without having to pay the computing price of a full three-dimensional model. Coats et al. described the use of the vertical equilibrium concept for developing pseudorelative-permeability and capillary-pressure pseudorelative-permeability and capillary-pressure functions for simulating the vertical dimension in a two-dimensional, areal simulator model This method assumes gravity-capillary equilibrium in the vertical direction. Also, Coats et al. developed a dimensionless parameter for estimating when these conditions are valid. Martin formed a mathematical basis for pseudofunctions by reducing the equations for pseudofunctions by reducing the equations for three-phase, three-dimensional, compressible flow to two-dimensional relations by partial integration of the equations of flow. Hearn extended the pseudorelative-permeability concept by adapting it pseudorelative-permeability concept by adapting it to stratified reservoirs where viscous rather than gravity and capillary forces dominate the vertical sweep efficiency. Hawthorne studied the effects of capillary pressure on pseudorelative permeability derived from the Hearn stratified model. Jacks et al. further enlarged thepseudorelative-perrneability concept by developing dynamic pseudorelative permeabilities. (Dynamic pseudos, denoting pseudos permeabilities. (Dynamic pseudos, denoting pseudos determined under flowing rather than static conditions, allow one to account for the interaction between viscous and gravity forces resulting from rate variation in the vertical plane.) Kyte and Berry generalized the work of Jacks et al. by introducing the concept of pseudocapillary pressures and improving dynamic pseudofunction calculations to include varying flow potential gradients. Emanual and Cook expanded the concept of vertical cross-section, pseudorelative permeabilities to include the vertical performance of individual wells. Their procedure combines the effect of coning and well pseudorelative permeabilities for use in a two-dimensional, areal model. Chappelear and Hirasaki used a different approach to including of coning effects in a two-dimensional, areal simulator by developing a functional relationship among water cut, average oil-column thickness, and total rate based on an analytical incompressible, steady-state model. The most sophisticated approach to representing well-coning effects in a reservoir simulator has been taken by Mrosovsky and Ridings and Akbar et al. They incorporated detailed numerical well models into the reservoir-model grid. SPEJ P. 251


1995 ◽  
Vol 166 ◽  
pp. 309-314
Author(s):  
P. K. Seidelmann

Reference Systems include the reference frames and their relationships, time arguments, ephemerides, and the standard constants and algorithms.The extragalactic, or radio, reference frame will be the basic frame. Achieving milli to microarcsecond accuracies at optical wavelengths will reduce the disparity between optical, radar, and radio reference frame determinations. Thus, the relationships and identifications of common sources should be much more accurate. Another significant change should be the ability to determine distances, and thus space motions on a three-dimensional basis, rather than the current two-dimensional basis of proper motions.Improvements in ephemerides provide the opportunity to investigate the difference between atomic and dynamical time, the relationship between the dynamical and extragalactic reference frame and the values of precession and nutation.Also, the relationships between the bright and faint optical catalogs, the infrared, and extragalactic reference frames should be better determined. Reference frames at other wavelengths will become determinable.


Sign in / Sign up

Export Citation Format

Share Document