scholarly journals Egocentric Asymmetric Coding in Sensory Cortical Border Cells

2021 ◽  
Author(s):  
Xiaoyang Long ◽  
Bin Deng ◽  
Jing Cai ◽  
Zhe Sage Chen ◽  
Sheng-Jia Zhang

ABSTRACTBoth egocentric and allocentric representations of space are essential to spatial navigation. Although some studies of egocentric coding have been conducted within and around the hippocampal formation, externally anchored egocentric spatial representations have not yet been fully explored. Here we record and identify two subtypes of border cell in the rat primary somatosensory cortex (S1) and secondary visual cortex (V2). Subpopulations of S1 and V2 border cells exhibit rotation-selective asymmetric firing fields in an either clockwise (CW) or counterclockwise (CCW) manner. CW- and CCW-border cells increase their firing rates when animals move unidirectionally along environmental border(s). We demonstrate that both CW- and CCW-border cells fire in an egocentric reference frame relative to environmental borders, maintain preferred directional tunings in rotated, stretched, dark as well as novel arenas, and switch their directional firings in the presence of multi-layer concentric enclosures. These findings may provide rotation-selective egocentric reference frames within a larger spatial navigation system, and point to a common computational principle of spatial coding shared by multiple sensory cortical areas.HighlightsEgocentric border cells are present in rat S1 and V2Subtypes of border cells display egocentric asymmetric codingEgocentric and allocentric streams coexist in sensory corticesRotation-selective asymmetric firing is robust with environmental manipulations

2020 ◽  
pp. 787-801
Author(s):  
S MORARESKU ◽  
K VLCEK

The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.


Author(s):  
John J Tukker ◽  
Prateep Beed ◽  
Michael Brecht ◽  
Richard Kempter ◽  
Edvard I Moser ◽  
...  

The hippocampal formation is critically involved in learning and memory, and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields, as well as a host of other functionally defined cell types including head-direction cells, speed cells, border cells, and object vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid-pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.


Author(s):  
Katherine Kelp-Stebbins

This chapter examines comics at the level of the page by considering the cultural techniques of reading and spatial navigation. The page, it is argued, is the space in comics where readers locate themselves politically and where, due to cultural and aesthetic conventions, readers may be dislocated and transformed. After first revisiting some theories of page layout in order to diagram how spatial orientation has been studied, the chapter then provides close readings of Alison Bechdel’s Fun Home, Leila Abdelrazaq’s Baddawi, and Michael Nicoll Yahgulanaas’s Red: A Haida Manga. Focusing on the diversity of modes by which these comics both serve as and utilize spatial navigation according to paginal design—how they may be representations of space and spaces of representation simultaneously—it ultimately considers how comics and, in turn, how users, both artists and readers alike, activate and mobilize these technical possibilities into emergent forms of expression and meaning.


2005 ◽  
Vol 170 (5) ◽  
pp. 803-812 ◽  
Author(s):  
Anne Pacquelet ◽  
Pernille Rørth

Cadherin-mediated adhesion can be regulated at many levels, as demonstrated by detailed analysis in cell lines. We have investigated the requirements for Drosophila melanogaster epithelial (DE) cadherin regulation in vivo. Investigating D. melanogaster oogenesis as a model system allowed the dissection of DE-cadherin function in several types of adhesion: cell sorting, cell positioning, epithelial integrity, and the cadherin-dependent process of border cell migration. We generated multiple fusions between DE-cadherin and α-catenin as well as point-mutated β-catenin and analyzed their ability to support these types of adhesion. We found that (1) although linking DE-cadherin to α-catenin is essential, regulation of the link is not required in any of these types of adhesion; (2) β-catenin is required only to link DE-cadherin to α-catenin; and (3) the cytoplasmic domain of DE-cadherin has an additional specific function for the invasive migration of border cells, which is conserved to other cadherins. The nature of this additional function is discussed.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2255-2263 ◽  
Author(s):  
A.M. Murphy ◽  
T. Lee ◽  
C.M. Andrews ◽  
B.Z. Shilo ◽  
D.J. Montell

To investigate the molecular mechanisms responsible for the temporal and spatial control of cell movements during development, we have been studying the migration of a small group of follicle cells, called the border cells, in the Drosophila ovary. Timely initiation of border cell migration requires the product of the slow border cells (slbo) locus, which encodes the Drosophila homolog of the transcription factor C/EBP. Here we report evidence that one target of C/EBP in the control of border cell migration is the FGF receptor homolog encoded by the breathless (btl) locus. btl expression in the ovary was border cell-specific, beginning just prior to the migration, and this expression was reduced in slbo mutants. btl mutations dominantly enhanced the border cell migration defects found in weak slbo alleles. Furthermore, C/EBP-independent btl expression was able to rescue the migration defects of hypomorphic slbo alleles. Purified Drosophila C/EBP bound eight sites in the btl 5′ flanking region by DNAse I footprinting. Taken together these results suggest that btl is a key, direct target for C/EBP in the regulation of border cell migration.


Development ◽  
2001 ◽  
Vol 128 (3) ◽  
pp. 321-330 ◽  
Author(s):  
Y. Liu ◽  
D.J. Montell

Epithelial to mesenchymal transitions and cell migration are important features of embryonic development and tumor metastasis. We are employing a systematic genetic approach to study the border cells in the Drosophila ovary, as a simple model for these cellular behaviors. Previously we found that expression of the basic-region/leucine zipper transcription factor, C/EBP, is required for the border cells to initiate their migration. Here we report the identification of a second nuclear factor, named JING (which means ‘still’), that is required for initiation of border cell migration. The jing locus was identified in a screen for mutations that cause border cell migration defects in mosaic clones. The jing mutant phenotype resembles that of slbo mutations, which disrupt the Drosophila C/EBP gene, but is distinct from other classes of border cell migration mutants. Expression of a jing-lacZ reporter in border cells requires C/EBP. Moreover, expression of jing from a heat-inducible promoter rescues the border cell migration defects of hypomorphic slbo mutants. The JING protein is most closely related to a mouse protein, AEBP2, which was identified on the basis of its ability to bind a small regulatory sequence within the adipocyte AP2 gene to which mammalian C/EBP also binds. We propose that the need to coordinate cell differentiation with nutritional status may be the link between mammalian adipocytes and Drosophila border cells that led to the conservation of C/EBP and AEBP2.


2020 ◽  
Vol 4 ◽  
pp. 239821282093946
Author(s):  
Maneesh V. Kuruvilla ◽  
David I. G. Wilson ◽  
James A. Ainge

During navigation, landmark processing is critical either for generating an allocentric-based cognitive map or in facilitating egocentric-based strategies. Increasing evidence from manipulation and single-unit recording studies has highlighted the role of the entorhinal cortex in processing landmarks. In particular, the lateral (LEC) and medial (MEC) sub-regions of the entorhinal cortex have been shown to attend to proximal and distal landmarks, respectively. Recent studies have identified a further dissociation in cue processing between the LEC and MEC based on spatial frames of reference. Neurons in the LEC preferentially encode egocentric cues while those in the MEC encode allocentric cues. In this study, we assessed the impact of disrupting the LEC on landmark-based spatial memory in both egocentric and allocentric reference frames. Animals that received excitotoxic lesions of the LEC were significantly impaired, relative to controls, on both egocentric and allocentric versions of an object–place association task. Notably, LEC lesioned animals performed at chance on the egocentric version but above chance on the allocentric version. There was no significant difference in performance between the two groups on an object recognition and spatial T-maze task. Taken together, these results indicate that the LEC plays a role in feature integration more broadly and in specifically processing spatial information within an egocentric reference frame.


2021 ◽  
Vol 79 (1) ◽  
pp. 95-116
Author(s):  
Cosimo Tuena ◽  
Valentina Mancuso ◽  
Chiara Stramba-Badiale ◽  
Elisa Pedroli ◽  
Marco Stramba-Badiale ◽  
...  

Background: Spatial navigation is the ability to estimate one’s position on the basis of environmental and self-motion cues. Spatial memory is the cognitive substrate underlying navigation and relies on two different reference frames: egocentric and allocentric. These spatial frames are prone to decline with aging and impairment is even more pronounced in Alzheimer’s disease (AD) or in mild cognitive impairment (MCI). Objective: To conduct a systematic review of experimental studies investigating which MCI population and tasks are used to evaluate spatial memory and how allocentric and egocentric deficits are impaired in MCI after navigation. Methods: PRISMA and PICO guidelines were applied to carry out the systematic search. Down and Black checklist was used to assess methodological quality. Results: Our results showed that amnestic MCI and AD pathology are the most investigated typologies; both egocentric and allocentric memory are impaired in MCI individuals, and MCI due to AD biomarkers has specific encoding and retrieval impairments; secondly, spatial navigation is principally investigated with the hidden goal task (virtual and real-world version), and among studies involving virtual reality, the privileged setting consists of non-immersive technology; thirdly, despite subtle differences, real-world and virtual versions showed good overlap for the assessment of MCI spatial memory. Conclusion: Considering that MCI is a subclinical entity with potential risk for conversion to dementia, investigating spatial memory deficits with navigation tasks might be crucial to make accurate diagnosis and rehabilitation.


Science ◽  
2018 ◽  
Vol 362 (6415) ◽  
pp. eaat6766 ◽  
Author(s):  
Jacob L. S. Bellmund ◽  
Peter Gärdenfors ◽  
Edvard I. Moser ◽  
Christian F. Doeller

The hippocampal formation has long been suggested to underlie both memory formation and spatial navigation. We discuss how neural mechanisms identified in spatial navigation research operate across information domains to support a wide spectrum of cognitive functions. In our framework, place and grid cell population codes provide a representational format to map variable dimensions of cognitive spaces. This highly dynamic mapping system enables rapid reorganization of codes through remapping between orthogonal representations across behavioral contexts, yielding a multitude of stable cognitive spaces at different resolutions and hierarchical levels. Action sequences result in trajectories through cognitive space, which can be simulated via sequential coding in the hippocampus. In this way, the spatial representational format of the hippocampal formation has the capacity to support flexible cognition and behavior.


Sign in / Sign up

Export Citation Format

Share Document