scholarly journals CORROSION BEHAVIOR STUDY OF STEEL POLE IN DIFFERENT COATING TECHNOLOGY

Author(s):  
Nurul Shuhada Pauzai ◽  
Nor Diana Ruszaini Mohd Zin ◽  
Khairuddin Abdullah ◽  
Mithila Seva Bala Sundaram

—Corrosion of steel pole is a serious issue as they used steel pole to support overhead power line in distribution. A lot of money and time are spent for maintenance and repair of existing steel pole. This paper presents investigation on various coating technologies of steel pole for initial corrosion activity. Five types of coating were used on steel samples; epoxy, VEF polyglass, galvanized, epoxy galvanized and polyglass galvanized. The accelerated ageing test, salt spray test and water absorption test were used to determine coating degradation and severity of corrosion process. It was found that, the corrosion rate for epoxy galvanized and VEF polyglass galvanized were higher as the samples were undergoing accelerated ageing test. While VEF polyglass steel showed higher percentage of weight loss during salt spray test. In addition, the results of water absorption behavior showed that epoxy steel gave higher average of absorption rate. The results obtained lead to low degradation of coating as the corrosion rate seem to be uniform

2015 ◽  
Vol 1119 ◽  
pp. 525-528
Author(s):  
Ru Tang Yan ◽  
Yuan Yuan Li ◽  
Chun Wei She ◽  
Hua Geng Li ◽  
Hua Pan Li

The poor corrosion resistance of magnesium alloys become the bottleneck restricting its development. Based on micro-arc oxidation (MAO) technology and the characteristics of fluorocarbon coating the surface of magnesium alloy build a high corrosion protection system, namely: Based on micro-arc oxidation coating fluorocarbon coatings. The formation of the composite coating through the resistance to ageing test through the resistance to ageing test, acid and alkali experiment and salt spray test results show the excellent corrosion resistance performance. Among them, the resistance to salt spray test time can reach 1500 h, which breaks the bottleneck of magnesium alloy corrosion resistance of 1000 h.


2014 ◽  
Vol 887-888 ◽  
pp. 1076-1079
Author(s):  
Qiong Jiang ◽  
Qiang Miao ◽  
Wen Ping Liang ◽  
Bei Lei Ren ◽  
Yi Xu ◽  
...  

New waterborne Al-Zn-Si-RE coatings with improved corrosion resistance were introduced in this study. The corrosion resistance of Al-Zn-Si-RE coatings was evaluated by electrochemical measurements and salt spray test. Evolution of microstructure and phase composition at different exposure time in salt spray test was investigated by scanning electron microscopy and X-ray diffraction technique. The results indicate that Al-Zn-Si-RE coatings provide effective sacrificial protection to the steel substrate but exhibit lower corrosion rate and higher corrosion resistance compared to zinc aluminum coatings. The dense continuous corrosion layer formed on Al-Zn-Si-RE coating acts as a barrier layer, limiting the transport of aggressive species towards the coating-substrate interface and the corrosion rate of the coating; Zinc aluminum hydroxy carbonates are the dominant components in the corrosion layer of Al-Zn-Si-RE coatings.


2021 ◽  
Vol 15 (2) ◽  
pp. 9-19
Author(s):  
Temitope Olumide Olugbade ◽  
Babatunde Olamide Omiyale

The corrosion rate of surface-conditioned 301 and 304 stainless steels (SS) was determined by salt spray test in a controlled accelerated corrosive medium (9.5 L of pure distilled water + 500 g NaCl). By surface conditioning via mechanical attrition treatment, a gradient-structured layer was firstly generated on the surface of the samples before the salt spray test. The corrosion rate was determined by the weight loss before and after the salt spray test. Compared to the untreated 301 SS sample with a weight loss of 0.15 g, the surface-conditioned samples treated for 300 s and 1200 s experienced a lower weight loss of 0.04 and 0.02 g, respectively. A similar reduction in weight loss was achieved for 304 SS sample when treated for 5, 10, and 20 mins.


2014 ◽  
Vol 556-562 ◽  
pp. 3-5
Author(s):  
Ke Shun Dai ◽  
Wen Kai Xiao ◽  
Tan Yu

The corrosion cracking of Shielded wire could result in protection equipments and automatic devices failing to work, which seriously affects the normal operation of the grid [1]. Therefore, researching the corrosion of Shielded wire has an important meaning. This article, through measurements of the polarization curve of the shield, researched the corrosion rate of different spray time and treatments, and came to a conclusion that the corrosion resistance after passivated by 823 preservatives is higher than before it.


2014 ◽  
Vol 1004-1005 ◽  
pp. 768-773
Author(s):  
Miao Lou ◽  
Yu Feng Lu ◽  
Meng Zhou ◽  
Fei Lu ◽  
Yin Jun Huang ◽  
...  

Accelerate the corrosion of the nanometer organic coating by design salt spray test. Research the corrosion resistance of the nanometer organic coating in grotto environment by EIS. The results show that prolong time of the salt spray test, the coating surface become to coarseness, the colour occur slight change, but no blistering and flake away. The Rc and Rt descend, every ten days the corrosion rate of coating augment decuple, at forty days is 3.14μm/a and the steel is not corrosion. The nanometer organic coating behave good protection ability and corrosion resistance in the grotto environment.


2007 ◽  
Vol 35 (2) ◽  
pp. 380-386
Author(s):  
C.F.R. Leeks ◽  
J.G. Hampton ◽  
B.A. McKenzie ◽  
M. Dehghan-Shoar

Author(s):  
zuoyin li ◽  
xianfeng lin ◽  
zhenqing xie ◽  
chunrong lin ◽  
lihua zheng ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 744
Author(s):  
Ameeq Farooq ◽  
Umer Masood Chaudry ◽  
Ahsan Saleem ◽  
Kashif Mairaj Deen ◽  
Kotiba Hamad ◽  
...  

To protect steel structures, zinc coatings are mostly used as a sacrificial barrier. This research aims to estimate the dissolution tendency of the electroplated and zinc-rich cold galvanized (ZRCG) coatings of a controlled thickness (35 ± 1 μm) applied via brush and dip coating methods on the mild steel. To assess the corrosion behavior of these coated samples in 3.5% NaCl and 10% NaCl containing soil solutions, open circuit potential (OCP), cyclic polarization (CP), and electrochemical impedance spectroscopy (EIS) tests were performed. The more negative OCP and appreciably large corrosion rate of the electroplated and ZRCG coated samples in 3.5% NaCl solution highlighted the preferential dissolution of Zn coatings. However, in saline soil solution, the relatively positive OCP (>−850 mV vs. Cu/CuSO4) and lower corrosion rate of the electroplated and ZRCG coatings compared to the uncoated steel sample indicated their incapacity to protect the steel substrate. The CP scans of the zinc electroplated samples showed a positive hysteresis loop after 24 h of exposure in 3.5% NaCl and saline soil solutions attributing to the localized dissolution of the coating. Similarly, the appreciable decrease in the charge transfer resistance of the electroplated samples after 24 h of exposure corresponded to their accelerated dissolution. Compared to the localized dissolution of the electroplated and brush-coated samples, the dip-coated ZRCG samples exhibited uniform dissolution during the extended exposure (500 h) salt spray test.


Sign in / Sign up

Export Citation Format

Share Document