scholarly journals Evaluation of nitrogen fertiliser in a beef production system

Author(s):  
S.T. Morris ◽  
A.F. Mcfrae

This paper reports and discusses the results of 4 years of trials (1985-1988) involving 2 farmlets, one receiving 3 nitrogen applications (50 kg /ha) in autumn, winter and spring (+N) and one receiving no N fertiliser (-N). Stocking rags were 3.3 animals/ha on -N farmlet and 4.3 animals/ha on the +N farmlet for the first 3 years, with the objective being to utilise the extra N-boosted grass with extra animals/ha but not to sacrifice individual animal performance. In the fourth year the stocking rates were kept the same on each farmlet (3.3 animals/ha) in an endeavour to utilise the extra grass grown on the +N farmlet by way of increased per head performance. In 2 of the 3 years (1985 and 1987) where the +N farmlet supported the higher stocking rate, liveweight gain (LWG) did not differ between animals. In 1986 the extra animals on the -l-N farmlet had a lower LWG, whereas in 1988 the LWGs were similar for the 2 farmlets stocked at the same rate. The apparent DM responses (kg DM/kg N applied) ranged from 2 to 12. The rates of N fertiliser used in this trial do not appear to result in economic increases in pasture production for the beef production system reported here. Nitrogen fertiliser did not reduce the clover content of pastures rotationally grazed by beef cattle. Keywords beef production, nitrogen fertiliser, pasture composition, livewieght gain, economics.

Author(s):  
K. Marsh ◽  
L.F.C. Brunswick

Lucerne and lucerne/prairie grass swards were compared at three stocking rates using yearling beef cattle. A 35 day rotational grazing system was used and the experiment ran for 130 days from early October, 1976. Pasture DM yields were higher on the mixed sward but animal production was greater on the lucerne only sward, particularly from December onwards. Increasing stocking rate tended to reduce herbage DM yield and per-animal production. There was no significant interaction between sward type and stocking rate on either sward or animal yield. Lucerne and lucerne/ prairie grass swards on pumice soil compared favourably with fertile Waikato permanent pastures in terms of carcass gain per hectare over the grazing period.


Author(s):  
A.G. Taylor

In a five-year trial, pasture and beef production of a traditional beef system using 6- t o 7-month-old Angus weaner steers and a dairy beef system using 3- to 4-month-old Friesian weaner steers were compared at three stocking rates.


Author(s):  
S.L. Harris ◽  
J.W. Penn ◽  
A.M. Bryant

High rates of nitrogen (N) fertiliser (217 and 324 kg N/ha/y) applied during a farrnlet study at No. 2 Dairy, DRC, Hamilton increased annual net herbage accumulation by 23% and 27% respectively. Increases in feed conservation and milk production reflected the extra pasture growth. On low stocked (3.2 cows/ha) farmlets where 219 and 330 kgN/ba/yr were used, clover contents declined to 12.5% and 3.4% respectively compared with 22.8% where no N was used. Decreased clover content was probably a result of competition from increased growth of ryegrass. At the high stocking rate (4.5 cows/ha), N application resulted in clover contents of 19.6% and 7.9% respectively, compared with 23.8% where no nitrogen was used. Pasture utilisation was better on these fannlets than under the lower stocking rate, suggesting the improved utilisation of additional feed, particularly during spring, was responsible for the higher clover content. Nitrogen fixation activity was lower in pastures which received N fertiliser due to both the decreased clover content and a reduction in activity per clover plant. Keywords: conservation, dairying, milk production, nitrogen fertiliser, pasture production, Trifolium repens


Author(s):  
J.D. Morton ◽  
S.D. Mcbride

Results from the first two years of a farmlet trial carried out on a dryland Lismore soil near Ashburton, Mid Canterbury are reported. Farmlet treatments were 0, 25 (25 N) and 50 (50 N) kg N/ha applied as urea in mid-April of 1992 and 1993. Stocking rates for each farmlet were 9.5, 10.5 and 11.5 (Year l), and 11, 12 and 13/ha Borderdale ewes/ha (Year 2). For both years of the trial, there were small increases in mean pasture cover from N use despite the higher stocking rates on the N farmlets. Both mean clover content (14%) and N fixation rates (36 kg N/ha/year) were low but only declined slightly with N use. Average lamb carcass weight was lower on the 25 N and 50 N farmlet than the nil N farmlet (16.9 cf 18.3 kg). Despite this decrease, lamb carcass production per ha was significantly higher on the 50 N farmlet (216 kg/ha) compared with the nil N farmlet (199 kg/ha), Similar wool weights per ewe between farmlets resulted in an increase in wool production per ha from both N farmlets (25 N - 34.9 kg/ha, 50 N - 38 kg/ha) compared to nil N (30.8 kg/ha). Keywords: clover content, lamb production, nitrogen fertiliser, nitrogen fixation, stocking rate, wool production


1978 ◽  
Vol 29 (1) ◽  
pp. 103 ◽  
Author(s):  
LA Edye ◽  
WT Williams ◽  
WH Winter

The relationship between stocking rate and liveweight change per animal was examined over a period of 3 years for two continuously grazed pastures, one of Brachiaria and the other consisting of guinea grass with Endeavour stylo and Siratro. On an annual basis there was no significant effect of stocking rate over the last 2 years, but on a seasonal basis there were highly significant effects in all seasons. In the dry seasons, animal gain rose as the stocking rate fell, but in the last two wet seasons gains fell with the lower stocking rates. On an annual basis the two effects cancelled out. Response surfaces for gain versus pasture yield and stocking rate were curvilinear (quadratic) during the wet season and linear during the dry. Optimum stocking rates (for maximum gain per hectare) were determined for the wet and dry seasons; the rate was greatly affected by the yield of green material during the dry season but less so during the wet. The possible causes of this reversed wetseason effect are discussed.


2021 ◽  
Vol 61 (1) ◽  
pp. 72
Author(s):  
M. K. Bowen ◽  
F. Chudleigh ◽  
D. Phelps

Context The large inter-annual and decadal rainfall variability that occurs in northern Australian rangelands poses major challenges for the profitable and sustainable management of grazing businesses. Aims An integrated bio-economic modelling framework (GRASP integrated with Breedcow and Dynama (BCD)) was developed to assess the effect of alternative grazing-management options on the profitability and sustainability of a beef cattle enterprise in the central-western Mitchell grasslands of Queensland over a multi-decadal time period. Methods Four grazing-management strategies were simulated over a 36-year period (1982–2017) in the GRASP pasture-growth model, using historic climate records for Longreach in central-western Queensland. Simulated annual stocking rates and steer liveweight-gain predictions from GRASP were integrated with published functions for mortality and conception rates in beef-breeding cattle in northern Australia, and then used to develop dynamic BCD cattle-herd models and discounted cash-flow budgets over the last 30 years of the period (1988–2017), following a 6-year model-equilibration period. The grazing-management strategies differed in the extent to which stocking rates were adjusted each year, from a common starting point in Year 1, in response to changes in the amount of forage available at the end of the summer growing season (May). They ranged from a low flexibility of ‘Safe stocking rate’ (SSR) and ‘Retain core herd’ (RCH) strategies, to a moderate flexibility of ‘Drought responsive’ (DR), to a ‘Fully flexible’ (FF) strategy. The RCH strategy included the following two herd-management scenarios: (1) ‘Retain herd structure’, where a mix of cattle were sold in response to low pasture availability, and (2) ‘Retain core breeders’, where steers were sold before reducing the breeder herd. Herd-management scenarios within the DR and FF strategies examined five and four options respectively, to rebuild cattle numbers and utilise available pasture following herd reductions made in response to drought. Key results Property-level investment returns expressed as the internal rate of return (IRR) were poor for SSR (–0.09%) and the three other strategies when the herd was rebuilt following drought through natural increase alone (RCH, –0.27%; DR, –1.57%; and FF, –4.44%). However, positive IRR were achieved when the DR herd was rebuilt through purchasing a mix of cattle (1.70%), purchasing pregnant cows (1.45%), trading steers (0.50%) or accepting cattle on agistment (0.19%). A positive IRR of 0.70% was also achieved for the FF property when purchasing a mix of cattle to rebuild numbers. However, negative returns were obtained when either trading steers (–2.60%) or agistment (–0.11%) scenarios were applied to the FF property. Strategies that were either inflexible or highly flexible increased the risk of financial losses and business failure. Property-level pasture condition (expressed as the percentage of perennial grasses; %P) was initially 69%P and was maintained under the DR strategy (68%P; average of final 5 years). The SSR strategy increased pasture condition by 25% to 86%P, while the RCH and FF strategies decreased pasture condition by 29% (49%P) and 65% (24%P) respectively. Conclusions In a highly variable and unpredictable climate, managing stocking rates with a moderate degree of flexibility in response to pasture availability (DR) was the most profitable approach and also maintained pasture condition. However, it was essential to economic viability that the property was re-stocked as soon as possible, in line with pasture availability, once good seasonal conditions returned. Implications This bio-economic modelling analysis refines current grazing-management recommendations by providing insights into both the economic and sustainability consequences of stocking-rate flexibility in response to fluctuating pasture supply. Caution should be exercised in recommending either overly conservative safe stocking strategies that are inflexible, or overly flexible stocking strategies, due to the increased risk of very poor outcomes.


1978 ◽  
Vol 18 (95) ◽  
pp. 788 ◽  
Author(s):  
NH Shaw

Changes in the yield, botanical composition and chemical composition of a native pasture (Heteropogon contortus dominant) oversown with S. humilis (T.S.) were measured in a grazing experiment from 1966 to 1973. The 24 treatments were factorial combinations of two sowing methods for T.S. (ground sowing into spaced cultivated strips, or aerial sowing), three levels of molybdenized superphosphate (F0 = nil ; F1 = 125 kg ha-1 annually; F2 = 250 kg ha-1 annually plus an extra 250 kg ha-1 initially) and four stocking rates. Stocking rates were gradually increased during the experiment and for the last three years overlapping ranges were used for the three fertilizer levels; the overall range was then from 0.55 to 1.65 beasts ha 1 T.S. establishment by ground sowing was much more reliable than from aerial sowing, giving twice the average percentage frequency, and this proportion was maintained over years. High fertilizer improved establishment and the best legume stands were in the high fertilizer high stocking rate treatments. Total presentation yield of pasture was increased by fertilizer and reduced by high stocking rates. Over the last two years the means for March, adjusted by regression to the overall average stocking rate of 0.98 beasts ha-1, were 31 20,4020 and 5370 kg ha-1 for F0, F1 and F2 respectively, but these yields were reduced by ca 25 per cent for an increase of 0.5 beasts ha-1. H. contortus remained dominant and its mean contribution to total yield increased from 48 per cent in 1969 to 67 per cent in 1973. This proportion was reduced by 12.8 per cent over the range from 0.55 to 1.65 beasts ha-1, but high fertilizer had the opposite effect so that differences between the extremes low stocked F0 and high stocked F2 were small. The DM percentage yield of T.S. was strongly increased by fertilizer, and, most importantly, also by high stocking rates in the presence of fertilizer. Values for F0 treatments remained below 10 per cent, but in the final year values for F1 and F2 at the highest stocking rates were 36 and 27 per cent, respectively. Despite these large changes in T.S., there was overall stability of botanical composition. Phosphorus and nitrogen concentrations in T.S. and H. contortus were increased by superphosphate but there was an overall decline in potassium concentration. Soil phosphorus levels were greatly increased


1997 ◽  
Vol 37 (7) ◽  
pp. 755 ◽  
Author(s):  
R. J. Jones

Summary. Pasture production and steer liveweight gain were compared on native pasture (Bothriochloa decipiens, Heteropogon contortus, Themeda triandra and Chrysopogon fallax) and on native pasture oversown with Indian couch or Indian bluegrass (Bothriochloa pertusa). This grass was not a planned introduction to the area but is spreading in Central and North Queensland and its value as a pasture species is questioned by graziers. There were 3 nominal stocking rates of 0.3, 0.6 and 0.9 steers/ha. Each paddock was stocked with 3 steers of stratified ages. The experiment was sown in March 1988 and terminated in June 1993. The experiment, sited 50 km south of Townsville in eucalypt woodland on a solodic-solodised-solonetz soil, was sown in March 1988 and terminated in June 1993. Increases in stocking rate resulted in a linear decline in both pasture yield (by 3–5 t/unit increase in stocking rate) and steer gains (by more than 100 kg/unit increase in stocking rate). Differences between pastures were apparent only at the medium and high stocking rates where, over time, Indian couch gave higher pasture yields and steer gains. Younger steers gained far more weight than older steers. Mean gains over 3 years were weaners 125 kg/year, yearlings 93 kg/year and 2-year-old steers 46 kg/year. Native pasture remained fairly stable botanically at the low stocking rate, but the tufted perennial grass species declined at both the medium and high stocking rates. Sowing Indian couch hastened the botanical changes due to stocking rate, and it became the dominant species at these higher stocking rates. At the low stocking rate, the contribution of Indian couch declined from initial values indicating that this is not an invasive species in the area at a low stocking rate. Contribution of Indian couch to pasture yield was linearly related to stocking rate. Nutritional quality of the Indian couch was similar to the other native perennial grasses though calcium concentration was higher. Increased steer gains were related to higher yield on Indian couch pastures at the higher stocking rates rather than to improved quality. Maximum liveweight gain/ha was achieved at about 0.6 steers/ha. Stocking at 0.9 steers/ha was not sustainable. Even at the low stocking rate, steers would need to spend about 2.8 years on the pastures after weaning to reach 500 kg liveweight. It was concluded that B. pertusa is a useful pasture grass in this environment giving steer gains equal to, or higher than, the gains from the native pasture which it replaced.


1998 ◽  
Vol 78 (1) ◽  
pp. 47-55 ◽  
Author(s):  
K. R. Koots ◽  
J. P. Gibson

The effect of altering production and marketing circumstances on economic values is quantified for a complete beef production system. Absolute and relative economic values were found to vary substantially with large, but realistic fluctuations in prices and costs. In addition, several examples of different management and different genotypes gave markedly different economic values than in the base situation. Also investigated were the effects of rescaling the enterprise to accommodate three alternative limitations; fixed feed available from pasture, fixed dollars available for feed or fixed amount of beef produced. The effects of rescaling were highly dependent on whether or not fixed costs were accounted for. When fixed costs were ignored (corresponding to a small positive profit) the economic value for mature size decreased while that for fertility increased, but other traits were largely unaffected by rescaling. Overall, production circumstances that reduced survival and fertility yielded the largest changes to economic values. Key words: Economic values, beef cattle, rescaling


1973 ◽  
Vol 81 (2) ◽  
pp. 193-204 ◽  
Author(s):  
J. P. Langlands ◽  
I. L. Bennett

SummaryA Phalaris tuberosa and Trifolium repens pasture was grazed continuously at stocking rates varying from 2·5 to 37·1 sheep per ha between 1964 and 1969. During this period herbage availability and composition, basal cover, root weight, water infiltration, soil moisture content, bulk density and chemical composition of the soil were measured at intervals.As stocking rate was increased, herbage availability, root weight, basal cover, soil pore space and the rate of water infiltration declined, and bulk density and the nitrogen and calcium contents of the herbage on offer increased. In periods of below-average rainfall, soil moisture and nitrate levels were greater when herbage was of low availability.Herbage production was calculated from estimates of herbage consumption and of litter decomposition, and averaged 8·45 t dry matter/ha/year; it was insensitive to changes in stocking rate over the range from 2 to 22 sheep/ha. The ratio, herbage consumption/ pasture production increased by 0'045 per unit increase in stocking rate.


Sign in / Sign up

Export Citation Format

Share Document