scholarly journals Environmental and economic consequences of soil water repellency under pasture

Author(s):  
K. Müller ◽  
M. Deurer ◽  
M. Slay ◽  
T. Aslam ◽  
J.A. Carter ◽  
...  

Our current survey revealed that soil water repellency (SWR) is a widespread phenomenon under pasture in the North Island. If present, SWR controls soil water dynamics.

2011 ◽  
Vol 62 (6) ◽  
pp. 765-779 ◽  
Author(s):  
M. Deurer ◽  
K. Müller ◽  
C. Van Den Dijssel ◽  
K. Mason ◽  
J. Carter ◽  
...  

Solid Earth ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 497-509 ◽  
Author(s):  
M. A. Gabarrón-Galeote ◽  
J. F. Martínez-Murillo ◽  
M. A. Quesada ◽  
J. D. Ruiz-Sinoga

Abstract. Mediterranean areas are characterized by a strong spatial variability that makes the soil hydrological response highly complex. Moreover, Mediterranean climate has marked seasons that provoke dramatic changes on soil properties determining the runoff rates, such as soil water content or soil water repellency (SWR). Thus, soil hydrological and erosive response in Mediterranean areas can be highly time- as well as space-dependant. This study shows SWR, aspect and vegetation as factors of the soil hydrological and erosive response. Erosion plots were set up in the north- and the south-facing hillslope and rainfall, runoff, sediments and SWR were monitored. Soil water repellency showed a seasonal behaviour and it was presented in three out of four microenvironments after the summer, disappearing in the wet season. In general, runoff rate was higher in shrubs patches (0.47 ± 0.67 mm) than in inter-shrub soils (1.54 ± 2.14 mm), but it changed seasonally in different ways, depending on the aspect considered, decreasing in the north-facing hillslope and increasing in the south-facing one. The main factor determining the hydrological and erosive response was the rainfall intensity, regardless of the rainfall depth of the event. This response was modulated mainly by SWR in the north-facing hillslope and the vegetation pattern in the south-facing one.


2015 ◽  
Vol 16 (3) ◽  
pp. 579-586 ◽  
Author(s):  
Zhaoqiang Ju ◽  
Xiaoxin Li ◽  
Chunsheng Hu

Understanding soil water dynamics and accurately estimating groundwater recharge are essential steps in achieving efficient and sustainable management of groundwater resources in regions with deep vadose zones. The objective of this study was to understand transient data and the dynamics nature of water from deep sections at the thick vadose zone, and to estimate groundwater recharge by applying Darcy's law of unsaturated water fluxes. The study was conducted during year 2009–2013 at Luancheng Agro-ecosystem Experimental Station of Chinese Academy of Sciences, which is located in the North China Plain. The water contents were measured with water probes and matric suctions using pressure transducers at depths of 9 and 11 m and were combined with laboratory measurements of unsaturated hydraulic conductivity to estimate groundwater recharge. The results indicated that the soil water content at 9- and 11-m depths increased following the rainy season and then gradually stabilized. And the intensity and continuity of precipitation events played an important role in soil water changes. The soil water dynamics between different depths (9 and 11 m) indicated a time lag (approximately 5–11 days). The groundwater recharge ranged from 7.60 to 19.75 mm resulting from hysteresis over the study period.


Soil Research ◽  
2019 ◽  
Vol 57 (6) ◽  
pp. 689 ◽  
Author(s):  
Robert M. Simpson ◽  
Karen Mason ◽  
Kyle Robertson ◽  
Karin Müller

Soil water repellency (SWR) is a common phenomenon observed throughout the world. It has a significant impact on water infiltration, altering soil hydrology and consequently the soil microbial community and nutrient cycling. Despite the importance of this phenomenon, the processes involved in the development and breakdown of SWR are poorly understood. The importance of the microbial community for SWR is becoming increasingly apparent. In this study, relationships between microbial activities and SWR were investigated by utilising the patchy occurrence of SWR to select both repellent and wettable soils in six locations of the east coast of the North Island of New Zealand. Samples were from directly adjacent locations in mid spring and late summer, and a range of soil physico-chemical properties and enzyme activities were measured. The degree and potential persistence of SWR did not change between the two sampling times, whereas actual persistence of SWR increased. Soil moisture decreased between the two times, and although there was an inverse relationship between moisture and actual persistence of SWR in late summer, unexpectedly, it was a positive relationship in spring. Phosphatase, arylsulfatase and polysaccharide degrading enzyme activities increased with increasing SWR, whereas peroxidase activity decreased. The possible effects of increasing temperature and decreasing water content were modelled, and the observed relationships were strengthened. Arylsulfatase activity was strongly correlated with the degree of SWR, as was extractable organic sulfate, suggesting that the breakdown of sulfate-esters within humic material in soil may be involved in the release and accumulation of SWR-inducing hydrophobic compounds.


2021 ◽  
Author(s):  
Matteo Longo ◽  
Curtis Dinnen Jones ◽  
Roberto César Izaurralde ◽  
Miguel L. Cabrera ◽  
Nicola Dal Ferro ◽  
...  

2020 ◽  
Vol 83 ◽  
pp. 371-385 ◽  
Author(s):  
Ángel del Vigo ◽  
Sergio Zubelzu ◽  
Luis Juana

Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115264
Author(s):  
Enoch V.S. Wong ◽  
Philip R. Ward ◽  
Daniel V. Murphy ◽  
Matthias Leopold ◽  
Louise Barton

Sign in / Sign up

Export Citation Format

Share Document