scholarly journals Vitamin B12 Induces Hepatic Fatty Infiltration through Altered Fatty Acid Metabolism

2021 ◽  
Vol 55 (3) ◽  
pp. 241-255

Background/Aims: Rise in global incidence of obesity impacts metabolic health. Evidence from human and animal models show association of vitamin B12 (B12) deficiency with elevated BMI and lipids. Human adipocytes demonstrated dysregulation of lipogenesis by low B12 via hypomethylation and altered microRNAs. It is known de novo hepatic lipogenesis plays a key role towards dyslipidaemia, however, whether low B12 affects hepatic metabolism of lipids is not explored. Methods: HepG2 was cultured in B12-deficient EMEM medium and seeded in different B12 media: 500nM(control), 1000pM(1nM), 100pM and 25pM(low) B12. Lipid droplets were examined by Oil Red O (ORO) staining using microscopy and then quantified by elution assay. Gene expression were assessed with real-time quantitative polymerase chain reaction (qRT-PCR) and intracellular triglycerides were quantified using commercial kit (Abcam, UK) and radiochemical assay. Fatty acid composition was measured by gas chromatography and mitochondrial function by seahorse XF24 flux assay. Results: HepG2 cells in low B12 had more lipid droplets that were intensely stained with ORO compared with control. The total intracellular triglyceride and incorporation of radio-labelled-fatty acid in triglyceride synthesis were increased. Expression of genes regulating fatty acid, triglyceride and cholesterol biosynthesis were upregulated. Absolute concentrations of total fatty acids, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), trans-fatty acids and individual even-chain and odd-chain fatty acids were significantly increased. Also, low B12 impaired fatty acid oxidation and mitochondrial functional integrity in HepG2 compared with control. Conclusion: Our data provide novel evidence that low B12 increases fatty acid synthesis and levels of individual fatty acids, and decreases fatty acid oxidation and mitochondrial respiration, thus resulting in dysregulation of lipid metabolism in HepG2. This highlights the potential significance of de novo lipogenesis and warrants possible epigenetic mechanisms of low B12.

Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 322
Author(s):  
Jae-Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Šestan-Peša ◽  
Nicole Kilian ◽  
...  

In the presence of high abundance of exogenous fatty acids, cells either store fatty acids in lipid droplets or oxidize them in mitochondria. In this study, we aimed to explore a novel and direct role of mitochondrial fission in lipid homeostasis in HeLa cells. We observed the association between mitochondrial morphology and lipid droplet accumulation in response to high exogenous fatty acids. We inhibited mitochondrial fission by silencing dynamin-related protein 1(DRP1) and observed the shift in fatty acid storage-usage balance. Inhibition of mitochondrial fission resulted in an increase in fatty acid content of lipid droplets and a decrease in mitochondrial fatty acid oxidation. Next, we overexpressed carnitine palmitoyltransferase-1 (CPT1), a key mitochondrial protein in fatty acid oxidation, to further examine the relationship between mitochondrial fatty acid usage and mitochondrial morphology. Mitochondrial fission plays a role in distributing exogenous fatty acids. CPT1A controlled the respiratory rate of mitochondrial fatty acid oxidation but did not cause a shift in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


2014 ◽  
Vol 457 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Marthe H. R. Ludtmann ◽  
Plamena R. Angelova ◽  
Ying Zhang ◽  
Andrey Y. Abramov ◽  
Albena T. Dinkova-Kostova

Transcription factor Nrf2 affects fatty acid oxidation; the mitochondrial oxidation of long-chain (palmitic) and short-chain (hexanoic) saturated fatty acids is depressed in the absence of Nrf2 and accelerated when Nrf2 is constitutively activated, affecting ATP production and FADH2 utilization.


2020 ◽  
Author(s):  
Jae Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Sestan-Pesa ◽  
Nicole Kilian ◽  
...  

ABSTRACTThe bioenergetic function of mitochondrial fission is associated with uncoupled respiration or elimination of damaged mitochondria to maintain a healthy mitochondrial population. In the presence of a high abundance of exogenous fatty acids, cells can either store fatty acids in lipid droplets or oxidize them in mitochondria. Even though carnitine palmitoyltransferase-1 (CPT1) controls the respiratory capacity of mitochondria in fatty acid oxidation, we observed that it did not dictate the balance of storage and usage of lipids in HeLa cells. On the other hand, inhibition of mitochondrial fission by silencing dynamic-related protein 1 (DRP1) resulted in an increase in fatty acid content of lipid droplets and a decrease in fatty acid oxidation. Mitochondrial fission was not only reflective of the amount of exogenous fatty acid being processed by mitochondria, but also found to be actively involved in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


1968 ◽  
Vol 110 (3) ◽  
pp. 511-519 ◽  
Author(s):  
A. E. Senior ◽  
B. Robson ◽  
H. S. A. Sherratt

1. The effects of the hypoglycaemic compound, pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pentanoic acid, pent-2-enoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on the oxidation of saturated fatty acids by rat liver mitochondria were determined. 2. The formation of 14CO2 from [1−14C]palmitate was strongly inhibited by 0·01mm-pent-4-enoic acid. 3. The inhibition of oxygen uptake was less than that of 14CO2 formation, presumably because fumarate was used as a sparker. 4. The oxidation of [1−14C]-butyrate, -octanoate or -laurate was not strongly inhibited by 0·01mm-pent-4-enoic acid. 5. The other four non-hypoglycaemic compounds did not inhibit the oxidation of any saturated fatty acid when tested at 0·01mm concentration, though they all inhibited strongly at 10mm. 6. The oxidation of [1−14C]-myristate and -stearate, but not of [1−14C]decanoate, was strongly inhibited by 0·01mm-pent-4-enoic acid. 7. The oxidation of [1−14C]palmitate was about 50% carnitine-dependent under the experimental conditions used. 8. The percentage inhibition of [1−14C]palmitate oxidation by pent-4-enoic acid was the same whether carnitine was present or not. 9. Acetoacetate formation from saturated fatty acids was inhibited by 0·1mm-cyclopropanecarboxylic acid to a greater extent than their oxidation. 10. The other compounds tested inhibited acetoacetate formation from saturated fatty acids proportionately to the inhibition of oxidation. 11. Possible mechanisms for the inhibition of long-chain fatty acid oxidation by pent-4-enoic acid are discussed. 12. There was a correlation between the ability to inhibit long-chain fatty acid oxidation and hypoglycaemic activity in this series of compounds.


1992 ◽  
Vol 281 (2) ◽  
pp. 561-567 ◽  
Author(s):  
C Skorin ◽  
C Necochea ◽  
V Johow ◽  
U Soto ◽  
A M Grau ◽  
...  

Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation.


1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


1993 ◽  
Vol 264 (6) ◽  
pp. R1065-R1070 ◽  
Author(s):  
D. M. Surina ◽  
W. Langhans ◽  
R. Pauli ◽  
C. Wenk

The influence of macronutrient content of a meal on postprandial fatty acid oxidation was investigated in 13 Caucasian males after consumption of a high-fat (HF) breakfast (33% carbohydrate, 52% fat, 15% protein) and after an equicaloric high-carbohydrate (HC) breakfast (78% carbohydrate, 6% fat, 15% protein). The HF breakfast contained short- and medium-chain fatty acids, as well as long-chain fatty acids. Respiratory quotient (RQ) and plasma beta-hydroxybutyrate (BHB) were measured during the 3 h after the meal as indicators of whole body substrate oxidation and hepatic fatty acid oxidation, respectively. Plasma levels of free fatty acids (FFA), triglycerides, glucose, insulin, and lactate were also determined because of their relationship to nutrient utilization. RQ was significantly lower and plasma BHB was higher after the HF breakfast than after the HC breakfast, implying that more fat is burned in general and specifically in the liver after an HF meal. As expected, plasma FFA and triglycerides were higher after the HF meal, and insulin and lactate were higher after the HC meal. In sum, oxidation of ingested fat occurred in response to a single HF meal.


2002 ◽  
Vol 51 (10) ◽  
pp. 621-626 ◽  
Author(s):  
Hisami SHINOHARA ◽  
Hatsumi SHIMADA ◽  
Osamu NOGUCHI ◽  
Fumie KUBOTA ◽  
Toshiaki AOYAMA

Sign in / Sign up

Export Citation Format

Share Document