scholarly journals Mitochondrial fission governed by Drp1 regulates exogenous fatty acid usage and storage

2020 ◽  
Author(s):  
Jae Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Sestan-Pesa ◽  
Nicole Kilian ◽  
...  

ABSTRACTThe bioenergetic function of mitochondrial fission is associated with uncoupled respiration or elimination of damaged mitochondria to maintain a healthy mitochondrial population. In the presence of a high abundance of exogenous fatty acids, cells can either store fatty acids in lipid droplets or oxidize them in mitochondria. Even though carnitine palmitoyltransferase-1 (CPT1) controls the respiratory capacity of mitochondria in fatty acid oxidation, we observed that it did not dictate the balance of storage and usage of lipids in HeLa cells. On the other hand, inhibition of mitochondrial fission by silencing dynamic-related protein 1 (DRP1) resulted in an increase in fatty acid content of lipid droplets and a decrease in fatty acid oxidation. Mitochondrial fission was not only reflective of the amount of exogenous fatty acid being processed by mitochondria, but also found to be actively involved in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.

Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 322
Author(s):  
Jae-Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Šestan-Peša ◽  
Nicole Kilian ◽  
...  

In the presence of high abundance of exogenous fatty acids, cells either store fatty acids in lipid droplets or oxidize them in mitochondria. In this study, we aimed to explore a novel and direct role of mitochondrial fission in lipid homeostasis in HeLa cells. We observed the association between mitochondrial morphology and lipid droplet accumulation in response to high exogenous fatty acids. We inhibited mitochondrial fission by silencing dynamin-related protein 1(DRP1) and observed the shift in fatty acid storage-usage balance. Inhibition of mitochondrial fission resulted in an increase in fatty acid content of lipid droplets and a decrease in mitochondrial fatty acid oxidation. Next, we overexpressed carnitine palmitoyltransferase-1 (CPT1), a key mitochondrial protein in fatty acid oxidation, to further examine the relationship between mitochondrial fatty acid usage and mitochondrial morphology. Mitochondrial fission plays a role in distributing exogenous fatty acids. CPT1A controlled the respiratory rate of mitochondrial fatty acid oxidation but did not cause a shift in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


2021 ◽  
Vol 55 (3) ◽  
pp. 241-255

Background/Aims: Rise in global incidence of obesity impacts metabolic health. Evidence from human and animal models show association of vitamin B12 (B12) deficiency with elevated BMI and lipids. Human adipocytes demonstrated dysregulation of lipogenesis by low B12 via hypomethylation and altered microRNAs. It is known de novo hepatic lipogenesis plays a key role towards dyslipidaemia, however, whether low B12 affects hepatic metabolism of lipids is not explored. Methods: HepG2 was cultured in B12-deficient EMEM medium and seeded in different B12 media: 500nM(control), 1000pM(1nM), 100pM and 25pM(low) B12. Lipid droplets were examined by Oil Red O (ORO) staining using microscopy and then quantified by elution assay. Gene expression were assessed with real-time quantitative polymerase chain reaction (qRT-PCR) and intracellular triglycerides were quantified using commercial kit (Abcam, UK) and radiochemical assay. Fatty acid composition was measured by gas chromatography and mitochondrial function by seahorse XF24 flux assay. Results: HepG2 cells in low B12 had more lipid droplets that were intensely stained with ORO compared with control. The total intracellular triglyceride and incorporation of radio-labelled-fatty acid in triglyceride synthesis were increased. Expression of genes regulating fatty acid, triglyceride and cholesterol biosynthesis were upregulated. Absolute concentrations of total fatty acids, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), trans-fatty acids and individual even-chain and odd-chain fatty acids were significantly increased. Also, low B12 impaired fatty acid oxidation and mitochondrial functional integrity in HepG2 compared with control. Conclusion: Our data provide novel evidence that low B12 increases fatty acid synthesis and levels of individual fatty acids, and decreases fatty acid oxidation and mitochondrial respiration, thus resulting in dysregulation of lipid metabolism in HepG2. This highlights the potential significance of de novo lipogenesis and warrants possible epigenetic mechanisms of low B12.


1993 ◽  
Vol 264 (6) ◽  
pp. R1065-R1070 ◽  
Author(s):  
D. M. Surina ◽  
W. Langhans ◽  
R. Pauli ◽  
C. Wenk

The influence of macronutrient content of a meal on postprandial fatty acid oxidation was investigated in 13 Caucasian males after consumption of a high-fat (HF) breakfast (33% carbohydrate, 52% fat, 15% protein) and after an equicaloric high-carbohydrate (HC) breakfast (78% carbohydrate, 6% fat, 15% protein). The HF breakfast contained short- and medium-chain fatty acids, as well as long-chain fatty acids. Respiratory quotient (RQ) and plasma beta-hydroxybutyrate (BHB) were measured during the 3 h after the meal as indicators of whole body substrate oxidation and hepatic fatty acid oxidation, respectively. Plasma levels of free fatty acids (FFA), triglycerides, glucose, insulin, and lactate were also determined because of their relationship to nutrient utilization. RQ was significantly lower and plasma BHB was higher after the HF breakfast than after the HC breakfast, implying that more fat is burned in general and specifically in the liver after an HF meal. As expected, plasma FFA and triglycerides were higher after the HF meal, and insulin and lactate were higher after the HC meal. In sum, oxidation of ingested fat occurred in response to a single HF meal.


1973 ◽  
Vol 57 (1) ◽  
pp. 109-116 ◽  
Author(s):  
J. V. Anastasia ◽  
R. L. McCarl

This paper reports the determination of the ability of rat heart cells in culture to release [14C]palmitate from its triglyceride and to oxidize this fatty acid and free [14C]palmitate to 14CO2 when the cells are actively beating and when they stop beating after aging in culture. In addition, the levels of glucose, glycogen, and ATP were determined to relate the concentration of these metabolites with beating and with cessation of beating. When young rat heart cells in culture are actively beating, they oxidize free fatty acids at a rate parallel with cellular ATP production. Both fatty acid oxidation and ATP production remain constant while the cells continue to beat. Furthermore, glucose is removed from the growth medium by the cells and stored as glycogen. When cultured cells stop beating, a decrease is seen in their ability to oxidize free fatty acids and to release them from their corresponding triglycerides. Concomitant with decreased fatty acid oxidation is a decrease in cellular levels of ATP until beating ceases. Midway between initiation of cultures and cessation of beating the cells begin to mobilize the stored glycogen. When the growth medium is supplemented with cortisol acetate and given to cultures which have ceased to beat, reinitiation of beating occurs. Furthermore, all decreases previously observed in ATP levels, fatty acid oxidation, and esterase activity are restored.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Monte S Willis ◽  
Jon Schisler ◽  
Holly McDonough ◽  
Cam Patterson

Previous work has suggested that MuRF1, a cardiac-specific protein, regulates metabolism by its interactions with proteins that regulate ATP transport, glycolysis, and the electron transport chain. We recently identified that MuRF1 is cardioprotective in ischemia reperfusion injury. In the current study, we investigated the effects of MuRF1 expression on metabolic substrate utilization and found that MuRF1 shifts substrate utilization from fatty acids to glucose in a dose-dependent manner. Isolated neonatal ventricular cardiomyocytes were treated with an adenovirus expressing MuRF1 (Ad.MuRF1) or GFP (Ad.GFP) at a range of 0–25 MOI (Multiplicity Of Infection). 14C-Oleate or 14C-glucose were added to cells for 1 hour and 14C-CO2 release was determined using the CO2-trapping method. Trapped 14CO2 and acid soluble metabolites were used to calculate total fatty acid oxidation. Cardiomyocytes treated with 5–25 MOI Ad.MuRF1 demonstrated a dose dependent decrease in fatty acid oxidation of 10.5 +/− 2.3(5 MOI), 8.5 +/− 1.9 (10 MOI), 6.6 +/− 1.6 (15 MOI), and 5.1 +/− 1.3 (25 MOI) nmol oleate/mg protein/h. Compared with control cardiomyocytes treated with 5–25 MOI Ad.GFP (average of 5–25 MOI=13.5 +/− 0.7 nmol oleate/mg protein/h), this represents a 22.2%– 62.2% decrease in fatty acid oxidation. Inversely, glucose oxidation increased with increasing MuRF1 expression. Cardiomyocytes infected with 25 MOI Ad.MuRF1 oxidized 184% more glucose (28.9 +/− 4.6 nmol glucose/mg protein/h) compared to control cells treated with 25 MOI Ad.GFP (15.7 +/− 1.3 nmol glucose/mg protein/h). Increasing MuRF1 expression resulted in no net gain or loss of calculated ATP production (1699 +/− 157 vs. 1480 +/− 188 nmol ATP/mg protein/h). The co-utilization of glucose and fatty acids as substrates for the production of ATP allows the heart to adapt to both environmental stress and disease. Increasing the relative proportion of glucose oxidation in relationship to fatty acids is a known protective mechanism during cardiac stress, and may represent one mechanism by which MuRF1 is cardioprotective.


2014 ◽  
Vol 457 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Marthe H. R. Ludtmann ◽  
Plamena R. Angelova ◽  
Ying Zhang ◽  
Andrey Y. Abramov ◽  
Albena T. Dinkova-Kostova

Transcription factor Nrf2 affects fatty acid oxidation; the mitochondrial oxidation of long-chain (palmitic) and short-chain (hexanoic) saturated fatty acids is depressed in the absence of Nrf2 and accelerated when Nrf2 is constitutively activated, affecting ATP production and FADH2 utilization.


1975 ◽  
Vol 229 (4) ◽  
pp. 885-889 ◽  
Author(s):  
Crass MF ◽  
GM Pieper

The metabolism of cardiac lipids and glycogen in hypoxic and well-oxygenated perfused rat hearts was studied in the presence or absence of epinephrine. Heart lipids were pre-labeled in vivo with [1-14C]palmitate. Triglyceride disappearance (measured chemically and radiochemically) was observed in well-oxygenated hearts and was stimulated by epinephrine (4.1 X 10(-7)M). Utilization of tissue triglycerides was inhibited in hypoxic hearts in the presence or absence of added epinephrine. Hypoxia resulted in a small increase in tissue 14C-free fatty acids and inhibition of 14C-labeled triglyceride fatty acid oxidation. Epinephrine had no stimulatory effect on fatty acid oxidation in hypoxic hearts. Utilization of 14C-labeled phospholipids (and total phospholipids) was similar in well-oxygenated and hypoxic hearts with or without added epinephrine. These results suggested that the antilipolytic effects of hypoxia were predominant over the lipolytic effects of epinephrine. Glycogenolysis was stimulated threefold by epinephrine in well-oxygenated hearts. Hypoxia alone was a potent stimulus to glycogenolysis. Addition of epinephrine to perfusates of hypoxic hearts resulted in a slight enhancement of glycogenolysis.


Sign in / Sign up

Export Citation Format

Share Document