Tensile Test of an Al Nanowire using In-situ Transmission Electron Microscopy and its Dynamic Deformation Behavior

2016 ◽  
Vol 54 (5) ◽  
pp. 386-389 ◽  
Author(s):  
Jae-Pyoung Ahn ◽  
Jae-Chul Lee ◽  
Sung-Hoon Kim ◽  
Hong-Kyu Kim ◽  
Jong-Hyun Seo ◽  
...  
2009 ◽  
Vol 633-634 ◽  
pp. 63-72 ◽  
Author(s):  
Y. B. Wang ◽  
M.L. Sui

This paper reviews our recent studies on the effect of twin boundary (TB) on the deformation behavior in Cu with nanoscale growth twins. In situ straining transmission electron microscopy investigations on TB migration, TBs and twin ends acting as dislocation emission sources, and the interactions between dislocations and TBs are highlighted. Results provide some useful understanding of why Cu with nanoscale twins leads to a combination of ultrahigh strength and high ductility.


Author(s):  
Sudipta Pramanik ◽  
Lennart Tasche ◽  
Kay-Peter Hoyer ◽  
Mirko Schaper

AbstractWithin this research, the multiscale microstructural evolution before and after the tensile test of a FeCo alloy is addressed. X-ray µ-computer tomography (CT), electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM) are employed to determine the microstructure on different length scales. Microstructural evolution is studied by performing EBSD of the same area before and after the tensile test. As a result, $$\langle$$ ⟨ 001$$\rangle$$ ⟩ ||TD, $$\langle$$ ⟨ 011$$\rangle$$ ⟩ ||TD are hard orientations and $$\langle$$ ⟨ 111$$\rangle$$ ⟩ ||TD is soft orientations for deformation accommodation. It is not possible to predict the deformation of a single grain with the Taylor model. However, the Taylor model accurately predicts the orientation of all grains after deformation. {123}$$\langle$$ ⟨ 111$$\rangle$$ ⟩ is the most active slip system, and {112}$$\langle$$ ⟨ 111$$\rangle$$ ⟩ is the least active slip system. Both EBSD micrographs show grain subdivision after tensile testing. TEM images show the formation of dislocation cells. Correlative HRTEM images show unresolved lattice fringes at dislocation cell boundaries, whereas resolved lattice fringes are observed at dislocation cell interior. Since Schmid’s law is unable to predict the deformation behavior of grains, the boundary slip transmission accurately predicts the grain deformation behavior.


2005 ◽  
Vol 20 (7) ◽  
pp. 1888-1901 ◽  
Author(s):  
Sung G. Pyo ◽  
Nack J. Kim

To understand the role of boundaries in the deformation behavior of TiAl, in situ straining experiments in transmission electron microscopy have been performed on thin foils of polysynthetically twinned (PST) crystal of Ti–49.3 at.% Al. The deformation behavior of PST TiAl is anisotropic, depending on the angle between the lamellar boundaries and the straining axes. For L-orientation, deformation twins and ordinary dislocations transmit across the true-twin (TT) boundaries but are reflected at the pseudo-twin (PT) and rotational order-fault (RO) boundaries. For transverse (T) orientation, deformation twins are transmitted across all TT, PT, and RO boundaries. For I-orientation, shear deformation occurs parallel to the lamellar boundaries. There is a transmission of deformation across the interphase (IP) boundary in longitudinal orientation, but deformation is blocked and reflected at the IP boundary in T-orientation. The role of the various types of boundaries in localized deformation behavior was evaluated by considering Schmid factors and geometric compatibility factors.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


Sign in / Sign up

Export Citation Format

Share Document