scholarly journals Toxigenicity of Fusarium Species in Gibberella fujikuroi Species Complex (GFSC) Associated With Stalk and Ear Rot Disease of Corn

2013 ◽  
Vol 2 (3) ◽  
pp. 147-154 ◽  
Author(s):  
Titi Darnetty ◽  
Baharuddin Salleh

Fusarium stalk and ear rot disease did not only cause significant losses of yield but also produced mycotoxins that are harmful to animals and human. This study was conducted to elucidate three major mycotoxins i.e. fumonisin B1 (FUMB1), moniliformin (MON), and beauvericin (BEA) produced by the Fusarium spp. isolated from corn showing typical stalk and ear rot symptoms in Indonesia, Malaysia and Thailand. Twenty selected strains of Fusarium species in Gibberella fujikuroi species complex i.e. F.verticillioides, F. proliferatum, F. subglutinans, and F. konzum were analyzed for production of the three mycotoxins by using an Ultra Performance Liquid Chromatography (UPLC).  All strains of F. verticillioides and F. proliferatum produced FUMB1 at high levelsand MON at low levels. Many strains of F. verticillioides (67%) and F. proliferatum (50%) did not produce BEA while the others produced BEA at low levels. Two strains of F. subglutinans did not produce FUMB1 but produced MON at low levels. One strain of F. subglutinans produced BEA and the other one did not produce the toxin.  Two strains of F. konzum produced both MON and BEA at low levels but only one strain produced FUMB1 at a low level. These mycotoxins have not been reported from Fusarium spp. in Gibberella fujikuroi species complex isolated form stalk and ear rot diseases of corn in these areas. Therefore, concerted efforts must be made to educate all stake holders about the presence and health hazards of these mycotoxins.

Plant Disease ◽  
2011 ◽  
Vol 95 (6) ◽  
pp. 648-656 ◽  
Author(s):  
Deanna L. Funnell-Harris ◽  
Jeffrey F. Pedersen

Sorghum grain, valuable for feed, food, and bioenergy, can be colonized by several Fusarium spp.; therefore, it was of interest to identify possible sources of conidia. Analysis of air and soil samples provided evidence for the presence of propagules from Fusarium genotypes that may cause grain infections. Soil population estimates of members of the Gibberella fujikuroi species complex, that includes sorghum pathogens and other Fusarium spp., suggested that adequate inoculum for systemic infections was present. Conidia in air samples within two sorghum fields were collected by passive trapping for 2 years. Subsampled Fusarium isolates indicated that numbers of G. fujikuroi increased from anthesis through maturity, which coincides with grain development stages vulnerable to Fusarium spp. Genotyping using translation elongation factor 1-α gene sequences revealed that spore trap isolates included members of G. fujikuroi that are sorghum pathogens: Fusarium thapsinum, F. verticillioides, F. proliferatum, and F. andiyazi. Also detected were F. graminearum, F. subglutinans, and several F. incarnatum-F. equiseti species complex haplotypes that colonize sorghum asymptomatically. All commonly found grain colonizers were detected from air samples in this study.


2018 ◽  
Vol 48 (4) ◽  
Author(s):  
Tiago Miguel Jarek ◽  
Álvaro Figueredo dos Santos ◽  
Dauri José Tessmann ◽  
Elisa Serra Negra Vieira

ABSTRACT: Fusarium wilt is a major disease which affects peach palm (Bactris gasipaes Kunth.var gasipaes Henderson). This study aimed to evaluate inoculation methods and aggressiveness of isolates of five Fusarium species on peach palm. Fusarium proliferatum can infect the leaves, stem, and roots of peach palm. F. proliferatum, F. oxysporum species complex (FOSC), F. verticillioides, F. solani species complex (FSSC), and Gibberella fujikuroi species complex (GFSC) are pathogenic to peach palm. The use of Fusarium-colonized ground corn for root inoculation was effective and reduced the level of damage to plants.


2010 ◽  
Vol 100 (7) ◽  
pp. 671-681 ◽  
Author(s):  
Deanna L. Funnell-Harris ◽  
Jeffrey F. Pedersen ◽  
Scott E. Sattler

To improve sorghum for bioenergy and forage uses, brown midrib (bmr)6 and -12 near-isogenic genotypes were developed in different sorghum backgrounds. The bmr6 and bmr12 grain had significantly reduced colonization by members of the Gibberella fujikuroi species complex compared with the wild type, as detected on two semiselective media. Fusarium spp. were identified using sequence analysis of a portion of the translation elongation factor (TEF) 1-α gene. The pathogens Fusarium thapsinum, F. proliferatum, and F. verticillioides, G. fujikuroi members, were commonly recovered. Other frequently isolated Fusarium spp. likely colonize sorghum asymptomatically. The χ2 analyses showed that the ratios of Fusarium spp. colonizing bmr12 grain were significantly different from the wild type, indicating that bmr12 affects colonization by Fusarium spp. One F. incarnatum-F. equiseti species complex (FIESC) genotype, commonly isolated from wild-type and bmr6 grain, was not detected in bmr12 grain. Phylogenetic analysis suggested that this FIESC genotype represents a previously unreported TEF haplotype. When peduncles of wild-type and near-isogenic bmr plants were inoculated with F. thapsinum, F. verticillioides, or Alternaria alternata, the resulting mean lesion lengths were significantly reduced relative to the wild type in one or both bmr mutants. This indicates that impairing lignin biosynthesis results in reduced colonization by Fusarium spp. and A. alternata.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1161
Author(s):  
Andrés Gustavo Jacquat ◽  
Martín Gustavo Theumer ◽  
María Carmen Cañizares ◽  
Humberto Julio Debat ◽  
Juliana Iglesias ◽  
...  

Mycoviruses appear to be widespread in Fusarium species worldwide. The aim of this work was to identify mycoviral infections in Fusarium spp., isolated from maize and sorghum grown in Argentina, and to estimate their potential effects on the pathogenicity and toxigenesis of the host fungus towards maize. Mycoviruses were identified in 2 out of 105 isolates analyzed; Fusarium verticillioides strain Sec505 and Fusarium andiyazi strain 162. They were characterized as members of the genus Mitovirus by high-throughput sequencing and sequence analysis. The F. verticillioides mitovirus was a novel mycovirus whereas the F. andiyazi mitovirus was found to be a new strain of a previously identified mitovirus. We have named these mitoviruses, Fusarium verticillioides mitovirus 1 (FvMV1) and Fusarium andiyazi mitovirus 1 strain 162 (FaMV1-162). To our knowledge, FvMV1 is the first mycovirus reported as naturally infecting F. verticillioides, the major causal agent of ear rot and fumonisin producer in corn. Both mitoviruses exhibited 100% vertical transmission rate to microconidia. The Fa162 strain infected with FaMV1-162 did not show phenotypic alterations. In contract, F. verticillioides Sec505 infected with FvMV1 showed increased virulence as well as microconidia and fumonisin-B1 production, compared with two uninfected strains. These results suggest that FvMV1 could have a role in modulating F. verticillioides pathogenicity and toxin production worth further exploring.


Mycologia ◽  
1998 ◽  
Vol 90 (3) ◽  
pp. 434 ◽  
Author(s):  
Helgard I. Nirenberg ◽  
Kerry O'Donnell

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1955
Author(s):  
Anysia Hedy Ujat ◽  
Ganesan Vadamalai ◽  
Yukako Hattori ◽  
Chiharu Nakashima ◽  
Clement Kiing Fook Wong ◽  
...  

The re-emergence of the Fusarium wilt caused by Fusarium odoratissimum (F. odoratissimum) causes global banana production loss. Thirty-eight isolates of Fusarium species (Fusarium spp.) were examined for morphological characteristics on different media, showing the typical Fusarium spp. The phylogenetic trees of Fusarium isolates were generated using the sequences of histone gene (H3) and translation elongation factor gene (TEF-1α). Specific primers were used to confirm the presence of F. odoratissimum. The phylogenetic trees showed the rich diversity of the genus Fusarium related to Fusarium wilt, which consists of F. odoratissimum, Fusarium grosmichelii, Fusarium sacchari, and an unknown species of the Fusarium oxysporum species complex. By using Foc-TR4 specific primers, 27 isolates were confirmed as F. odoratissimum. A pathogenicity test was conducted for 30 days on five different local cultivars including, Musa acuminata (AAA, AA) and Musa paradisiaca (AAB, ABB). Although foliar symptoms showed different severity of those disease progression, vascular symptoms of the inoculated plantlet showed that infection was uniformly severe. Therefore, it can be concluded that the Fusarium oxysporum species complex related to Fusarium wilt of banana in Malaysia is rich in diversity, and F. odoratissimum has pathogenicity to local banana cultivars in Malaysia regardless of the genotype of the banana plants.


Sign in / Sign up

Export Citation Format

Share Document