scholarly journals Random Amplified Polymorphic DNA (RAPD) Analysis to Determine the Genetic Variability among Virulent and Less Virulent Isolates of Fusarium moniliforme, Fusarium oxysporum and Fusarium solani Isolated from Infected Cotton Seedlings

2016 ◽  
Vol 4 (3) ◽  
pp. 137-145
Author(s):  
Ahmed Abdelmagid ◽  
Abdel-Moneim Amein ◽  
Mohamed Hassan ◽  
Hamdy E. Hares

Root-rot of cotton (Gossypium spp.) is one of the most important diseases in Upper Egypt. Isolation has been done from diseased cotton roots and seeds which were collected from 11 counties in Assiut province, Egypt. Identification procedures of the isolated fungi confirmed that the isolated fungi were for Fusarium solani, F. moniliforme and F. oxysporum and Rhizoctonia solani. Thirty six isolates of Fusarium spp. and 10 isolates of Rhizoctonia solani were tested for their pathogenicity on both Giza 80 and Giza 83 cotton seedlings to verify their virulence on seedlings. The pathogenicity test results have grouped the Fusarium spp. isolates into three groups; highly virulent that caused 91-100% mortalities; moderately virulent that caused 81-90% mortalities and low virulent that caused lower than 81.0%  mortalities. Data also shows that, in general Giza 80 cotton cultivar was more susceptible for infection with Fusarium spp. when compared with Giza 83 cotton cultivar. In case of Rhizoctonia solani, data revealed that the infection percentage was significantly affected by isolates while cotton cultivars had no significant influence on infection. Four 10-mer primers (1:6-d, 2:6-d, 4:6-d and 5:6-d) were used in RAPD-PCR to determine the genetic variability between six isolates, one virulent and one less virulent, of F. moniliforme, F. oxysporum and F. solani. Our results showed that the primer 2:6-d clearly separated F. moniliforme, F. oxysporum and F. solani and proved to be quite powerful in distinguishing the three different species and isolates of Fusarium spp.

2007 ◽  
Vol 36 (4) ◽  
pp. 799-806 ◽  
Author(s):  
Andréa Alves do Egito ◽  
Beatriz Helena Fuck ◽  
Concepta McManus ◽  
Samuel Rezende Paiva ◽  
Maria do Socorro Maués Albuquerque ◽  
...  

Blood samples were collected from Pantaneiro Horses in five regions of Mato Grosso do Sul and Mato Grosso States. Arabian, Mangalarga Marchador and Thoroughbred were also included to estimate genetic distances and the existing variability among and within these breeds by RAPD-PCR (Random Amplified Polymorphic DNA - Polymerase Chain Reaction) molecular markers. From 146 primers, 13 were chosen for amplification and 44 polymorphic bands were generated. The analysis of molecular variance (AMOVA) indicated that the greatest portion of detected variability was due to differences between individuals within populations (75.47%). Analysis of the genetic variability between pairs of populations presented higher estimates for the five Pantaneiro populations with the Arabian breed, while lowest estimates were presented by pairs formed among the Pantaneiro populations with the Mangalarga Marchador. Highest genic diversity was shown by the Pantaneiro (0.3396), which also showed highest genetic distance with the Arabian and lowest with Mangalarga Marchador breed. UPGMA dendrogram showed distinct differences between naturalized (Pantaneiro and Mangalarga Marchador) and exotic (Arabian and Thoroughbred) breeds. In the dendrogram generated by UPGMA method, the similarity matrix generated by the Jaccard coefficient showed distinction between the naturalised breeds, Pantaneiro and Mangalarga Marchador, and the exotic breeds, Árab and English Thoroughbred. Results suggest that the Pantaneiro presents a higher genetic variability than the other studied breeds and has a close relationship with the Mangalarga Marchador.


Nematology ◽  
2004 ◽  
Vol 6 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Paola Lax ◽  
Juan Rondan Dueñas ◽  
Cristina Gardenal ◽  
Marcelo Doucet

Abstract Knowledge of genetic variability within and between phytophagous nematode populations is important for the selection of suitable control strategies. The nematode Heterodera glycines is the most important pathogen of soybean in many producer countries, causing significant economic losses. The levels of variability were analysed in two populations of the nematode from Argentina, using Random Amplified Polymorphic DNA markers in order to evaluate the genetic population structure of this species. DNA was extracted from single females of race 1 and race 3 populations. Five primers were selected and 50 consistent fragments were considered for further analysis. Populations studied showed high levels of genetic diversity. Most of the total variation detected in allele frequencies was attributed to variability among individuals of the same population (83%) rather than inter-population differences (17%). None of the populations demonstrated exclusive bands. However, 68% of fragments showed significant differences in their allele frequencies. This study revealed an important degree of genetic differentiation between both populations, probably as a consequence of limited gene flow between them or because each population was under different management practices at its site of origin. Results herein represent the first analysis of genetic structure in H. glycines populations using RAPD-PCR technique.


2010 ◽  
Vol 15 (1) ◽  
Author(s):  
  Rangoju P.K. ◽  
Kumar S. ◽  
Kolte A.P. ◽  
Gulyani R. ◽  
Singh V.K.

Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 669-669 ◽  
Author(s):  
V. L. Castroagudin ◽  
J. C. Correll ◽  
R. D. Cartwright

During 2008, fruit rot of pumpkin (Cucurbita pepo L.) occurred on several cultivars in commercial fields in northeast and northwest Arkansas. Disease incidence ranged from 50 to 75% of the fruit, which were unmarketable. Symptoms included large (>10 cm), brown, corky lesions where the fruit was in contact with the soil. Initially, the lesions were water soaked. A cross section of the symptomatic fruit rind revealed a dry, brown, spongy rot with a light brown halo. Lesions finally became soft and wet, causing infected fruit to collapse. Masses of white mycelia surrounded advanced lesions. No rot symptoms were observed on the vines. Fusarium spp. were isolated from symptomatic fruit. Macroconidia obtained from field-infected fruit and pure potato dextrose agar (PDA) cultures of the predominant Fusarium sp. were morphologically similar. The straight, cylindrical, and robust macroconidia contained between five and seven septa. The apical cell was rounded and blunt and the basal cell was rounded. All three morphological types were tested for pathogenicity on mature fruit of cv. Sorcerer. Fruit were surface disinfected in 70% ethanol. Wounds were made (4 mm deep) in the fruit surface with a cork borer. Three wounds per isolate per fruit were inoculated with a PDA plug colonized with mycelium from a 3-day-old culture. Three replicated wounds were inoculated per isolate and four replicate fruit were used. After inoculation, the wounds were covered with saran wrap. The fruit were incubated at approximately 24°C and evaluated after 7 days. An uncolonized PDA plug was used as a negative control. After 7 days, only the predominant Fusarium sp. produced typical lesions, which were brown, water soaked, and approximately 3 cm in diameter. Fusarium spp. were recovered from the inoculated lesions. The colonies on PDA and macroconidia of the pathogenic Fusarium sp. were morphologically similar to the isolate inoculated and the ones recovered from field lesions. DNA was extracted from the same three isolates used in the pathogenicity test. A portion of the translation elongation factor 1α (TEF) gene was sequenced to verify the identity of the pathogenic isolates. On the basis of a comparison of the Fusarium-ID database at Pennsylvania State University (3), the pathogenic isolates had a 100% match with Fusarium solani f. sp. cucurbitae race 1, teleomorph Nectria haematococca mating population I, isolate NRRL 22098. F. solani f. sp cucurbitae was previously identified as the causal agent of crown and foot rot and a fruit rot of cucurbits and responsible for outbreaks on pumpkin fruit in Connecticut, Missouri, New York, and Ohio from 2001 to 2003 and again in Ohio in 2005 (2). In 2008, a higher average total of monthly precipitation was recorded late in the growing season in Arkansas, (13.7 cm in August and 23.7 cm in September). Although F. equiseti has previously been reported as a fruit rot pathogen of pumpkin in Arkansas (1), to our knowledge, this is the first report of F. solani f. sp cucurbitae as causal agent of pumpkin fruit rot in the state. Reference: (1) J. C. Correll et al. Plant Dis. 75:751, 1991. (2) W. H. Elmer et al. Plant Dis. 91:1142, 2007. (3) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004.


2014 ◽  
Vol 12 (1) ◽  
pp. 143 ◽  
Author(s):  
Yesid Fabián Acevedo-Granados ◽  
Luz Elena Cano ◽  
Adelaida María Gaviria Rivera
Keyword(s):  

Fusariumes un género fúngico amplio y diverso de diferentes complejos deespecies, causante de una gran variedad de enfermedades en plantas, productor dediversas toxinas y representa un importante patógeno oportunista en humanos. Laidentificación de las especies de Fusarium ha sido por mucho tiempo una tareacompleja y controversial. Esto es debido principalmente a la aplicación de diferentessistemas taxonómicos y la inherente variabilidad morfológica de algunas de estasespecies. Estas características requieren de la revisión por parte de un expertomicólogo, con el fin de lograr un acertado y confiable diagnóstico, el cual es crucialen el manejo de enfermedades o infecciones y estudios de diversidad genética. EnColombia, se ha reportado un incremento anual del 317 % de casos de infeccionescausadas por Fusarium, entre 1995 y 2003, sin embargo en centros especializados anivel nacional en micología médica, no se lleva a cabo un diagnóstico a nivel deespecie. El objetivo de este estudio fue el de establecer la identidad de aislamientosclínicos de Fusarium, mediante el uso de un marcador molecular. Para lograr esteobjetivo se llevó a cabo la identificación de los 59 aislamientos mediante consulta enla base de datos Fusarium-ID con base en secuencias codificantes del factor deelongación de la traducción EF-1a. Los resultados obtenidos permitieron observar laagrupación de los 59 aislamientos en tres complejos de especies: Fusariumoxysporum(FOSC), Fusarium solani (FSSC) y Fusarium incarnanatum-equiseti(FIESC). Basado en los resultados, se observa que el uso de las secuenciascodificantes para el factor de elongación de traducción permiten una confiableclasificación de los aislamientos de origen clínico y permite ratificar la utilidad queposee este marcador molecular en los distintos complejos de Fusarium.


Beverages ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 27
Author(s):  
Dimitrios Kontogiannatos ◽  
Vicky Troianou ◽  
Maria Dimopoulou ◽  
Polydefkis Hatzopoulos ◽  
Yorgos Kotseridis

Nemea and Mantinia are famous wine regions in Greece known for two indigenous grape varieties, Agiorgitiko and Moschofilero, which produce high quality PDO wines. In the present study, indigenous Saccharomyces cerevisiae yeast strains were isolated and identified from spontaneous alcoholic fermentation of Agiorgitiko and Moschofilero musts in order to evaluate their oenological potential. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) recovered the presence of five distinct profiles from a total of 430 yeast isolates. The five obtained strains were evaluated at microvinifications trials and tested for basic oenological and biochemical parameters including sulphur dioxide and ethanol tolerance as well as H2S production in sterile grape must. The selected autochthonous yeast strains named, Soi2 (Agiorgitiko wine) and L2M (Moschofilero wine), were evaluated also in industrial (4000L) fermentations to assess their sensorial and oenological characteristics. The volatile compounds of the produced wines were determined by GC-FID. Our results demonstrated the feasibility of using Soi2 and L2M strains in industrial fermentations for Agiorgitiko and Moschofilero grape musts, respectively.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Craig M. Sandlin ◽  
James R. Steadman ◽  
Carlos M. Araya ◽  
Dermot P. Coyne

Five isolates of the bean rust fungus Uromyces appendiculatus were shown to be specifically virulent on bean genotypes of Andean origin. This specificity was demonstrated by the virulence of five pairs of isolates on a differential set of 30 Phaseolus vulgaris landraces. Each isolate pair was from a different country in the Americas and consisted of one Andean-specific isolate and one nonspecific isolate. Of the differential P. vulgaris landraces, 15 were of Middle American origin and 15 were of Andean origin. The Andean-specific rust isolates were highly virulent on Andean landraces but not on landraces of Middle American origin. Rust isolates with virulence to Middle American landraces were also generally virulent on Andean material; no truly Middle American-specific isolates were found. Random amplified polymorphic DNA (RAPD) analysis of the rust isolates also distinguished the two groups. Four of the Andean-specific rust isolates formed a distinct group compared to four of the nonspecific isolates. Two of the isolates, one from each of the two virulence groups, had intermediate RAPD banding patterns, suggesting that plasmagomy but not karyogamy occurred between isolates of the two groups.


Sign in / Sign up

Export Citation Format

Share Document