Dendritic integration theory: A thalamo-cortical theory of state and content of consciousness

2020 ◽  
Vol 1 (II) ◽  
Author(s):  
Talis Bachmann ◽  
Mototaka Suzuki ◽  
Jaan Aru

The idea that the thalamo-cortical system is the crucial constituent of the neurobiological mechanisms of consciousness has a long history. For the last few decades, however, consciousness research has to a large extent overlooked the interplay between the cortex and thalamus. Here we revive an integrated view of the neurobiology of consciousness by presenting and discussing several recent major findings about the role of the thalamocortical interactions in consciousness. Based on these findings we propose a specific cellular mechanism how thalamic nuclei modulate the integration of different processing streams within single cortical pyramidal neurons. This theory is inspired by recent work done in rodents, but it integrates decades of work conducted on various species. We illustrate how this new view readily explains various properties and experimental phenomena associated with conscious experience. We discuss the implications of this idea and some of the experiments that need to be done in order to test it. Our view bridges two long-standing perspectives on the neural mechanisms of consciousness and proposes that cortical and thalamo-cortical processing interact at the level of single pyramidal cells.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Talis Bachmann

Abstract Theories of consciousness using neurobiological data or being influenced by these data have been focused either on states of consciousness or contents of consciousness. These theories have occasionally used evidence from psychophysical phenomena where conscious experience is a dependent experimental variable. However, systematic catalog of many such relevant phenomena has not been offered in terms of these theories. In the perceptual retouch theory of thalamocortical interaction, recently developed to become a blend with the dendritic integration theory, consciousness states and contents of consciousness are explained by the same mechanism. This general-purpose mechanism has modulation of the cortical layer-5 pyramidal neurons that represent contents of consciousness as its core. As a surplus, many experimental psychophysical phenomena of conscious perception can be explained by the workings of this mechanism. Historical origins and current views inherent in this theory are presented and reviewed.


2004 ◽  
Vol 92 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Miguel Maravall ◽  
Edward A. Stern ◽  
Karel Svoboda

The development of layer 2/3 sensory maps in rat barrel cortex (BC) is experience dependent with a critical period around postnatal days (PND) 10–14. The role of intrinsic response properties of neurons in this plasticity has not been investigated. Here we characterize the development of BC layer 2/3 intrinsic responses to identify possible sites of plasticity. Whole cell recordings were performed on pyramidal cells in acute BC slices from control and deprived rats, over ages spanning the critical period (PND 12, 14, and 17). Vibrissa trimming began at PND 9. Spiking behavior changed from phasic (more spike frequency adaptation) to regular (less adaptation) with age, such that the number of action potentials per stimulus increased. Changes in spiking properties were related to the strength of a slow Ca2+-dependent afterhyperpolarization. Maturation of the spiking properties of layer 2/3 pyramidal neurons coincided with the close of the critical period and was delayed by deprivation. Other measures of excitability, including I-f curves and passive membrane properties, were affected by development but unaffected by whisker deprivation.


1998 ◽  
Vol 79 (3) ◽  
pp. 1549-1566 ◽  
Author(s):  
Xiao-Jing Wang

Wang, Xiao-Jing. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79: 1549–1566, 1998. In this work, we present a quantitative theory of temporal spike-frequency adaptation in cortical pyramidal cells. Our model pyramidal neuron has two-compartments (a “soma” and a “dendrite”) with a voltage-gated Ca2+ conductance ( g Ca) and a Ca2+-dependent K+ conductance ( g AHP) located at the dendrite or at both compartments. Its frequency-current relations are comparable with data from cortical pyramidal cells, and the properties of spike-evoked intracellular [Ca2+] transients are matched with recent dendritic [Ca2+] imaging measurements. Spike-frequency adaptation in response to a current pulse is characterized by an adaptation time constant τadap and percentage adaptation of spike frequency F adap [% (peak − steady state)/peak]. We show how τadap and F adap can be derived in terms of the biophysical parameters of the neural membrane and [Ca2+] dynamics. Two simple, experimentally testable, relations between τadap and F adap are predicted. The dependence of τadap and F adap on current pulse intensity, electrotonic coupling between the two compartments, g AHP as well the [Ca2+] decay time constant τCa, is assessed quantitatively. In addition, we demonstrate that the intracellular [Ca2+] signal can encode the instantaneous neuronal firing rate and that the conductance-based model can be reduced to a simple calcium-model of neuronal activity that faithfully predicts the neuronal firing output even when the input varies relatively rapidly in time (tens to hundreds of milliseconds). Extensive simulations have been carried out for the model neuron with random excitatory synaptic inputs mimicked by a Poisson process. Our findings include 1) the instantaneous firing frequency (averaged over trials) shows strong adaptation similar to the case with current pulses; 2) when the g AHP is blocked, the dendritic g Ca could produce a hysteresis phenomenon where the neuron is driven to switch randomly between a quiescent state and a repetitive firing state. The firing pattern is very irregular with a large coefficient of variation of the interspike intervals (ISI CV > 1). The ISI distribution shows a long tail but is not bimodal. 3) By contrast, in an intrinsically bursting regime (with different parameter values), the model neuron displays a random temporal mixture of single action potentials and brief bursts of spikes. Its ISI distribution is often bimodal and its power spectrum has a peak. 4) The spike-adapting current I AHP, as delayed inhibition through intracellular Ca2+ accumulation, generates a “forward masking” effect, where a masking input dramatically reduces or completely suppresses the neuronal response to a subsequent test input. When two inputs are presented repetitively in time, this mechanism greatly enhances the ratio of the responses to the stronger and weaker inputs, fulfilling a cellular form of lateral inhibition in time. 5) The [Ca2+]-dependent I AHP provides a mechanism by which the neuron unceasingly adapts to the stochastic synaptic inputs, even in the stationary state following the input onset. This creates strong negative correlations between output ISIs in a frequency-dependent manner, while the Poisson input is totally uncorrelated in time. Possible functional implications of these results are discussed.


1990 ◽  
Vol 64 (3) ◽  
pp. 1000-1008 ◽  
Author(s):  
N. L. Chamberlin ◽  
R. D. Traub ◽  
R. Dingledine

1. Spontaneous discharges that resemble interictal spikes arise in area CA3 b/c of rat hippocampal slices bathed in 8.5 mM [K+]o. Excitatory postsynaptic potentials (EPSPs) also appear at irregular intervals in these cells. The role of local synaptic excitation in burst initiation was examined with intracellular and extracellular recordings from CA3 pyramidal neurons. 2. Most (70%) EPSPs were small (less than 2 mV in amplitude), suggesting that they were the product of quantal release or were evoked by a single presynaptic action potential in another cell. It is unlikely that most EPSPs were evoked by a presynaptic burst of action potentials. Indeed, intrinsic burst firing was not prominent in CA3 b/c pyramidal cells perfused in 8.5 mM [K+]o. 3. The likelihood of occurrence and the amplitude of EPSPs were higher in the 50-ms interval just before the onset of each burst than during a similar interval 250 ms before the burst. This likely reflects increased firing probability of CA3 neurons as they emerge from the afterhyperpolarization (AHP) and conductance shunt associated with the previous burst. 4. Perfusion with 2 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a potent quisqualate receptor antagonist, decreased the frequency of EPSPs in CA3 b/c neurons from 3.6 +/- 0.9 to 0.9 +/- 0.3 (SE) Hz. Likewise, CNQX reversibly reduced the amplitude of evoked EPSPs in CA3 b/c cells. 5. Spontaneous burst firing in 8.5 mM [K+]o was abolished in 11 of 31 slices perfused with 2 microM CNQX.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 81 (3) ◽  
pp. 1341-1354 ◽  
Author(s):  
Peter Schwindt ◽  
Wayne Crill

Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. Apical dendrites of layer 5 pyramidal cells in a slice preparation of rat sensorimotor cortex were depolarized focally by long-lasting glutamate iontophoresis while recording intracellularly from their soma. In most cells the firing pattern evoked by the smallest dendritic depolarization that evoked spikes consisted of repetitive bursts of action potentials. During larger dendritic depolarizations initial burst firing was followed by regular spiking. As dendritic depolarization was increased further the duration (but not the firing rate) of the regular spiking increased, and the duration of burst firing decreased. Depolarization of the soma in most of the same cells evoked only regular spiking. When the dendrite was depolarized to a critical level below spike threshold, intrasomatic current pulses or excitatory postsynaptic potentials also triggered bursts instead of single spikes. The bursts were driven by a delayed depolarization (DD) that was triggered in an all-or-none manner along with the first Na+ spike of the burst. Somatic voltage-clamp experiments indicated that the action current underlying the DD was generated in the dendrite and was Ca2+ dependent. Thus the burst firing was caused by a Na+ spike-linked dendritic Ca2+spike, a mechanism that was available only when the dendrite was adequately depolarized. Larger dendritic depolarization that evoked late, constant-frequency regular spiking also evoked a long-lasting, Ca2+-dependent action potential (a “plateau”). The duration of the plateau but not its amplitude was increased by stronger dendritic depolarization. Burst-generating dendritic Ca2+spikes could not be elicited during this plateau. Thus plateau initiation was responsible for the termination of burst firing and the generation of the constant-frequency regular spiking. We conclude that somatic and dendritic depolarization can elicit quite different firing patterns in the same pyramidal neuron. The burst and regular spiking observed during dendritic depolarization are caused by two types of Ca2+-dependent dendritic action potentials. We discuss some functional implications of these observations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Homeira Moradi Chameh ◽  
Scott Rich ◽  
Lihua Wang ◽  
Fu-Der Chen ◽  
Liang Zhang ◽  
...  

AbstractIn the human neocortex coherent interlaminar theta oscillations are driven by deep cortical layers, suggesting neurons in these layers exhibit distinct electrophysiological properties. To characterize this potential distinctiveness, we use in vitro whole-cell recordings from cortical layers 2 and 3 (L2&3), layer 3c (L3c) and layer 5 (L5) of the human cortex. Across all layers we observe notable heterogeneity, indicating human cortical pyramidal neurons are an electrophysiologically diverse population. L5 pyramidal cells are the most excitable of these neurons and exhibit the most prominent sag current (abolished by blockade of the hyperpolarization activated cation current, Ih). While subthreshold resonance is more common in L3c and L5, we rarely observe this resonance at frequencies greater than 2 Hz. However, the frequency dependent gain of L5 neurons reveals they are most adept at tracking both delta and theta frequency inputs, a unique feature that may indirectly be important for the generation of cortical theta oscillations.


2018 ◽  
Author(s):  
Guy Eyal ◽  
Matthias B. Verhoog ◽  
Guilherme Testa-Silva ◽  
Yair Deitcher ◽  
Ruth Benavides-Piccione ◽  
...  

AbstractWe present the first-ever detailed models of pyramidal cells from human neocortex, including models on their excitatory synapses, dendritic spines, dendritic NMDA- and somatic/axonal- Na+ spikes that provided new insights into signal processing and computational capabilities of these principal cells. Six human layer 2 and layer 3 pyramidal cells (HL2/L3 PCs) were modeled, integrating detailed anatomical and physiological data from both fresh and post mortem tissues from human temporal cortex. The models predicted particularly large AMPA- and NMDA- conductances per synaptic contact (0.88 nS and 1.31nS, respectively) and a steep dependence of the NMDA-conductance on voltage. These estimates were based on intracellular recordings from synaptically-connected HL2/L3 pairs, combined with extra-cellular current injections and use of synaptic blockers. A large dataset of high-resolution reconstructed HL2/L3 dendritic spines provided estimates for the EPSPs at the spine head (12.7 ± 4.6 mV), spine base (9.7 ± 5.0 mV) and soma (0.3 ± 0.1 mV), and for the spine neck resistance (50 – 80 MΩ). Matching the shape and firing pattern of experimental somatic Na+-spikes provided estimates for the density of the somatic/axonal excitable membrane ion channels, predicting that 134 ± 28 simultaneously activated HL2/L3- HL2/L3 synapses are required for generating (with 50% probability) a somatic Na+ spike. Dendritic NMDA spikes were triggered in the model when 20 ± 10 excitatory spinous synapses were simultaneously activated on individual dendritic branches. The particularly large number of basal dendrites in HL2/L3 PCs and the distinctive cable elongation of their terminals imply that ~25 NMDA- spikes could be generated independently and simultaneously in these cells, as compared to ~14 in L2/3 PCs from the rat temporal cortex. These multi-sites nonlinear signals, together with the large (~30,000) excitatory synapses/cell, equip human L2/L3 PCs with enhanced computational capabilities. Our study provides the most comprehensive model of any human neuron to-date demonstrating the biophysical and computational distinctiveness of human cortical neurons.


2021 ◽  
Author(s):  
Juan Yang ◽  
Liyan Qiu ◽  
Xuanmao Chen

It is well-recognized that primary cilia regulate embryonic neurodevelopment, but little is known about their roles in postnatal neurodevelopment. The striatum pyramidal (SP) of hippocampal CA1 consists of superficial and deep sublayers, however, it is not well understood how early- and late-born pyramidal neurons position to two sublayers postnatally. Here we show that neuronal primary cilia emerge after CA1 pyramidal cells have reached SP, but before final neuronal positioning. The axonemes of primary cilia of early-born neurons point to the stratum oriens (SO), whereas late-born neuronal cilia orient toward the stratum radiatum (SR), reflecting an inside-out lamination pattern. Neuronal primary cilia in SP undergo marked changes in morphology and orientation from postnatal day 5 (P5) to P14, concurrent with pyramidal cell positioning to the deep and superficial sublayers and with neuronal maturation. Transgenic overexpression of Arl13B, a protein regulating ciliogenesis, not only elongates primary cilia and promotes earlier cilia protrusion, but also affects centriole positioning and cilia orientation in SP. The centrioles of late-born neurons migrate excessively to cluster at SP bottom before primary cilia protrusion and a reverse movement back to the main SP. Similarly, this pull-back movement of centriole/cilia is also identified on late-born cortical pyramidal neurons, although early- and late-born cortical neurons display the same cilia orientation. Together, this study provides the first evidence demonstrating that late-born pyramidal neurons exhibit a reverse movement for cell positioning, and primary cilia regulate pyramidal neuronal positioning to the deep and superficial sublayers in the hippocampus.


2017 ◽  
Author(s):  
Georgia M. Alexander ◽  
Logan Y. Brown ◽  
Shannon Farris ◽  
Daniel Lustberg ◽  
Caroline Pantazis ◽  
...  

AbstractHippocampal oscillations arise from coordinated activity among distinct populations of neurons and are associated with cognitive functions and behaviors. Although much progress has been made toward identifying the relative contribution of specific neuronal populations in hippocampal oscillations, far less is known about the role of hippocampal area CA2, which is thought to support social aspects of episodic memory. Furthermore, the little existing evidence on the role of CA2 in oscillations has led to conflicting conclusions. Therefore, we sought to identify the specific contribution of CA2 pyramidal neurons to brain oscillations using a controlled experimental system. We used excitatory and inhibitory DREADDs in transgenic mice to acutely and reversibly manipulate CA2 pyramidal cell activity. Here, we report on the role of CA2 in hippocampal-prefrontal cortical network oscillations and social behavior. We found that excitation or inhibition of CA2 pyramidal cells bidirectionally regulated hippocampal and prefrontal cortical low gamma oscillations and inversely modulated hippocampal ripple oscillations. Further, CA2 inhibition impaired social approach behavior. These findings support a role for CA2 in low gamma generation and ripple modulation within the hippocampus and underscore the importance of CA2 neuronal activity in extrahippocampal oscillations and social behavior.


2008 ◽  
Vol 100 (2) ◽  
pp. 620-628 ◽  
Author(s):  
Sylvain Rheims ◽  
Alfonso Represa ◽  
Yehezkel Ben-Ari ◽  
Yuri Zilberter

The neonatal period is critical for seizure susceptibility, and neocortical networks are central in infantile epilepsies. We report that application of 4-aminopyridine (4-AP) to immature (P6–P9) neocortical slices generates layer-specific interictal seizures (IISs) that transform after recurrent seizures to ictal seizures (ISs). During IISs, cell-attached recordings show action potentials in interneurons and pyramidal cells in L5/6 and interneurons but not pyramidal neurons in L2/3. However, L2/3 pyramidal neurons also fire during ISs. Using single N-methyl-d-aspartate (NMDA) channel recordings for measuring the cell resting potential ( Em), we show that transition from IISs to ISs is associated with a gradual Em depolarization of L2/3 and L5/6 pyramidal neurons that enhances their excitability. Bumetanide, a NKCC1 co-transporter antagonist, inhibits generation of IISs and prevents their transformation to ISs, indicating the role excitatory GABA in epilepsies. Therefore deep layer neurons are more susceptible to seizures than superficial ones. The initiating phase of seizures is characterized by IISs generated in L5/6 and supported by activation of both L5/6 interneurons and pyramidal cells. IISs propagate to L2/3 via activation of L2/3 interneurons but not pyramidal cells, which are mostly quiescent at this phase. In superficial layers, a persistent increase in excitability of pyramidal neurons caused by Em depolarization is associated with a transition from largely confined GABAergic IIS to ictal events that entrain the entire neocortex.


Sign in / Sign up

Export Citation Format

Share Document