scholarly journals Determination of Level of Service (LOS) on Different Roads in Kuching Area (A Case study)

2009 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Chen K.C. ◽  
Larry S.T.

The concept of Level of Service (LOS) is originated from the Highway Capacity Manual (HCM). LOS is a qualitative assessment of the operational performance of a roadway facility based on quantitative performance measures. Many transportation infrastructure funding decisions are based on LOS analysis, and LOS designations are intended to represent user-perceived quality of service. This study has been carried out to determine the LOS on different roads. The profile of study area is in Kuching, Sarawak where five roads with different characteristics and posted speed of urban multilane with 80km/hr and 70km/hr, suburban two-lane two-way with 90 km/hr and 80km/hr had been selected for the studies. Substantial numbers of inputs are required for the LOS analysis and determination based on HCM procedures. These inputs are: a long list of traffic volume collected in different peak hours; traffic composition such as proportion of heavy vehicles in traffic; geometric characteristics such as number of lanes, lane width, shoulder width, and approach grades. Results of the study showed that LOS in the urban multilane is still in satisfactory range with LOS ranging from C to D except for most of the traffic congestion cases in urban multilane at the traffic light junctions and roundabouts. However, LOS in the suburban two-lane two-way is only satisfying in the range of LOS E; hence multilane should be introduced in such cases. Recommendations such as to provide various or multitude modes of transportation needs should be introduced in urban area. Furthermore, a suitable and efficient hierarchy in road system should be provided in suburban areas before turning into urban areas.

2020 ◽  
Vol 12 (2) ◽  
pp. 665 ◽  
Author(s):  
Yi Wang ◽  
Jian Rong ◽  
Chenjing Zhou ◽  
Xin Chang ◽  
Siyang Liu

An insufficient functional relationship between adjustment factors and saturation flow rate (SFR) in the U.S. Highway Capacity Manual (HCM) method increases an additional prediction bias. The error of SFR predictions can reach 8–10%. To solve this problem, this paper proposes a comprehensive adjusted method that considers the effects of interactions between factors. Based on the data from 35 through lanes in Beijing and 25 shared through and left-turn lanes in Washington, DC, the interactions between lane width and percentage of heavy vehicles and proportion of left-turning vehicles were analyzed. Two comprehensive adjustment factor models were established and tested. The mean absolute percentage error (MAPE) of model 1 (considering the interaction between lane width and percentage of heavy vehicles) was 4.89% smaller than the MAPE of Chinese National Standard method (Standard Number is GB50647) at 13.64%. The MAPE of model 2 (considering the interaction between lane width and proportion of left-turning vehicles was 33.16% smaller than the MAPE of HCM method at 14.56%. This method could improve the accuracy of SFR prediction, provide support for traffic operation measures, alleviate the traffic congestion, and improve sustainable development of cities.


Author(s):  
Alexandra Kondyli ◽  
David K. Hale ◽  
Mohamadamin Asgharzadeh ◽  
Bastian Schroeder ◽  
Anxi Jia ◽  
...  

Unnecessary traffic delays and vehicle emissions have adverse effects on quality of life. To solve the traffic congestion problem in the U.S.A., mitigation or elimination of bottlenecks is a top priority. Agencies across the U.S.A. have deployed several congestion mitigation strategies, such as lane and shoulder width reduction, which aim to adding lanes without significantly altering the footprint of the freeway. A limited number of studies have evaluated the operational benefits of lane narrowing. Although the Highway Capacity Manual does account for lane and shoulder widths, the adjustments that it provides are outdated. The goal of this research was to develop analytical models, compatible with the Highway Capacity Manual methods, to account for lane and shoulder width narrowing, using field data from across the U.S.A. This paper presents a new free-flow speed regression model, which accounts for lane and shoulder widths, and capacity adjustment factors depending on the lane width.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Ebrahim Sangsefidi ◽  
Mohammadjafar Rashidbenam ◽  
Shahab Kabiri ◽  
Hossein Amid ◽  
Maryam Sangsefidi

Transport forms one of the primary needs in all categories of the population in modern society; it is of paramount concern for traffic engineers, transport planners, and policy makers to understand and evaluate the quality of service being provided by the transport facilities designed by them. This paper presents an investigation in profile geometric design and traffic flow operation on two-lane two-way highways and provides analyses that will help in a better understanding of traffic operation on these facilities to select the optimum profile configuration. The effects of influencing parameters consisting of grade, length of grade, traffic composition, and traffic volume are evaluated and finally a systematic procedure to evaluate flow rate under the base condition is presented. Finally, based on these achievements an algorithm is introduced to select optimum Finished Ground of profile view. Results show that the percentage of heavy vehicles has a contributing effect on traffic operation so that the optimum profile configuration is incredibly affected by this factor. Source data have been obtained from Highway Capacity Manual (HCM) as a pioneer document in respect of quantifying the concept of capacity for a transport facility.


Author(s):  
Madhav V. Chitturi ◽  
Rahim F. Benekohal

Traffic data were collected from 11 work zones on Interstate highways in Illinois in which one of the two lanes was open. The reductions in free-flow speed (FFS) due to narrow lanes and lateral clearances in work zones were studied. It was found that the reductions in FFSs of vehicles in work zones because of narrow lanes were higher than the reductions given in the Highway Capacity Manual for basic freeway sections. The data also showed that the narrower the lane was, the greater the speed reduction was. The data showed that the FFSs of heavy vehicles were statistically lower than the FFSs of passenger cars, even though the speed limit was the same for both types of vehicles. In addition, the reduction in the FFSs of heavy vehicles was greater than the reduction in the FFSs of passenger cars. This greater reduction in the speed of heavy vehicles affected the performance of the traffic stream in work zones. Thus, it should be considered in the computation of the passenger car equivalence for heavy vehicles. It is recommended that 10, 7, 4.4, and 2.1 mph be used for speed reduction in work zones for lane widths of 10, 10.5, 11, and 11.5 ft, respectively.


2020 ◽  
Vol 3 (1) ◽  
pp. 9
Author(s):  
Amrita Winaya

Traffic congestion is a problem that is often faced by Indonesian big cities. It is related to land use in an area that causes on-street parking. The main cause is the imbalance between demand and supply, namely the need for parking during rush hour exceeds the capacity of existing parking. Another consequence is the increasing of side barriers resulting in the delays on certain roads. Shopping area in Jl.Kapasan, Surabaya is one of the densely areas attracted most people of Surabaya to conduct trading activities and shopping for daily needs. The denstiy of this region will affect the performance of traffic flow and causing delays.The study aims to identify on-street parking in Jl.Kapasan shopping area, consequences arising from parking on the road, and determine the level of service or performance of roads around this shopping area. The analytical methods used are derived from Indonesian Highway Capacity Manual 1997. Based on calculation and analysis, the capacity of Jl.Kapasan without parking on the road was 1468 pcu/hour and with on-street parking was only 1276 pcu/hour.


2016 ◽  
Vol 1 (01) ◽  
pp. 32
Author(s):  
Kurnia Hadi Putra ◽  
Faisal Rosih Alfanan

AbstractUnsignalised 3-way intersection at Jati Raya – Kahuripan Nirvana streets is an area with high traffic congestion. It caused by the increasing of vehicle volume at rush hour. In addition, the surrounded area of the intersection is a commercial area with a dense population and the intersection is also the main access to the toll road. To deal with these conditions, management and traffic engineering need to be done. The method of field surveys is conducted to obtain primary data and the existing condition. All the traffic data is obtained from the number of vehicles passing through the intersection for four days (27-30 May 2016). Then, all the data is recapitulated and calculated using the formula of Indonesian Highway Capacity Manual 1997. As the result, it can be concluded that the 3-way intersection at Jati Raya – Kahuripan Nirvana has the degree of saturation (DS) 1.23. This value is far from the one suggested by MKJI 1997 for the unsignalized 3-way intersection, i.e. DS = 0.85. Therefore, management and traffic engineering are conducted to overcome these conditions. The fourth alternative shows the DS 0,51 with Level of Service C.Keywords: Unsignalised Intersection, Degree of Saturation, Management and Traffic Engineering AbstrakSimpang tiga tak bersinyal pada jalan Jati Raya – Kahuripan Nirwana merupakan daerah yang sering mengalami kemacetan. Hal ini disebabkan oleh pertumbuhan lalu lintas yang cukup tinggi, selain itu disekitar simpang merupakan daerah komersil, pemukiman penduduk dan akses menuju jalan tol. Dalam mengatasi permasalahan pada simpang digunakan manajemen dan rekayasa lalu lintas. Metode yang digunakan adalah metode survei lapangan untuk mendapatkan data primer dan kondisi eksisting. Data lalu lintas diperoleh dari jumlah kendaraan yang melintasi simpang selama empat hari (27-30 Mei 2016). Kemudian data tersebut diolah dengan perhitungan Manual Kapasitas Jalan Indonesia (MKJI) 1997. Dari hasil analisis data dapat disimpulkan bahwa simpang jalan Jati Raya – Kahuripan Nirwana memiliki nilai Derajat Kejenuhan (DS) = 1,23 dengan Level Of Service LOS (F) . Nilai itu jauh dari nilai yang disarankan oleh MKJI 1997 untuk simpang tak bersinyal yaitu DS = 0,85. Oleh karena itu dilakukan beberapa alternatif solusi manajemen dan rekayasa lalu lintas. Dalam mengatasi kemacetan diambil alternatif solusi yang menghasilkan derajat kejenuhan (DS) paling kecil dengan nilai = 0,51 dengan Level Of Service LOS (C) yang terjadi pada alternatif empat.Kata kunci: Simpang tak bersinyal, Derajat Kejenuhan, Manajemen rekayasa lalulintas


2018 ◽  
Vol 10 (8) ◽  
pp. 2951 ◽  
Author(s):  
Paola Di Mascio ◽  
Gaetano Fusco ◽  
Giorgio Grappasonni ◽  
Laura Moretti ◽  
Antonella Ragnoli

Most road accidents occur in urban areas and notably at urban intersections, where cyclists and motorcyclists are the most vulnerable. In the last few years, cycling mobility has been growing; therefore, bike infrastructures should be designed to encourage this type of mobility and reduce motorized and/or private transport. The paper presents a study to implement a new cycle path in the existing cycle and road network in Rome, Italy. The geometric design of the new path complies with Italian standards regarding the technical characteristics of bicycle paths, while the Highway Capacity Manual has been considered for the traffic analysis. In particular, a before-after approach has been adopted to examine and compare the traffic flow at more complex and congested intersections where the cycle path will pass. Trams, buses, cars, bikes and pedestrians were the traffic components considered in each analysis. The software package PTV VISSIM 8 allowed the simulations of traffic flows at traffic-light intersections; an original linear process has been proposed to model dynamic intelligent traffic controls, which are not admitted by the software used. The traffic analysis allowed the identification of the best option for each of the five examined intersections. Particularly, the maximum queue length value and the total number of passed vehicles have been considered in order to optimize the transport planning process. The results of this study highlight the importance of providing engineered solutions when a cycle path is implemented in a complex road network, in order to avoid negative impacts on the citizens and maximize the expected advantages.


Author(s):  
Manuel G. Romana ◽  
Gemma Lépez

According to the Highway Capacity Manual (HCM), it is possible to quantify level of service for rural highways using a basic parameter: percent time delay. Since this variable cannot be measured, it is proposed in the HCM that the percentage of delayed vehicles (% DV) be used as a surrogate measure. The manual gives no means of predicting or estimating % DV other than a curve relating total % DV to total hourly volume. However, it is worth noting that the methodology proposed in the manual does not use this curve. In any case, there has been to this date no proposal as to the estimation of % DV by traffic direction. The results of an attempt to estimate % DV by direction through multiple correlations are presented. The data were gathered on four highways in the province of Madrid, Spain (M-111, M-501, M-600, and M-607). Measurements were carried out in 3-h periods on plain or slightly sloping ground during daily or weekly peak periods. The average daily traffic and rate of heavy vehicles in 1991 were, sorted chronologically, 9,500 and 6.4 percent for M-607; 9,800 and 5.1 percent for M-600; 8,100 and 8.6 percent for M-111; and 14,400 and 5.0 percent for M-501. Several multiple correlations are offered, and one is chosen that has an accuracy of 0.7964, expressed through the coefficient r2 (the explained variation). The model is % DV (Direction 1) = A * (VDirection1) + B * (VDirection2) + C, with the following numerical values: % DV = 0.0443 * V1 + 0.0096 * V2 + 25.5411.


On-street Parking activities on the curb of streets can disrupt the traffic flow and cause traffic congestion. This study aimed to examine the effect of On-street Parking on vehicle velocity and Level of Service (LO). This research was conducted on Cik Di Tiro Street, around Panti Rapih Hospital, Yogyakarta. The analysis of road segmentation was guided by the Indonesian highway capacity manual (1997). The analysis results revealed that during weekdays, the vehicle velocity in the morning without any On-Street Parking was 29.45 kilometers per hour, while the level of service was at level C, meanwhile, in the afternoon, and in the evening, the vehicle velocity was 21,672 kilometers per hour with the parking accumulation as many as 1-2 light vehicles, 4-18 motorcycles, and the level of service was at level E. Meanwhile, in the weekend, the vehicle velocity in the morning without On-street Parking was 29.16 kilometers per hour, and the level of service was at level A. Meanwhile, in the afternoon and evening, the vehicle speed was 23.04 kilometers per hour, with the parking accumulation as many as 1-3 light vehicles, 1-14 motorycles, and the level of services were at Level D and C in the afternoon.


Author(s):  
Jarkko Niittymäki ◽  
Matti Pursula

The main goal of this research was to update the basic saturation flow values of signalized intersections. The secondary goal was to analyze the effects of certain external factors (such as weather, road, and traffic conditions) on saturation flow. The updating is based on extensive field measurements and simulations. Altogether, about 39,000 queues were observed in this study. Field measurements at 30 locations were made according to the method described in the Highway Capacity Manual and simulations were done with the Helsinki University of Technology HUT-SIM simulator, which was calibrated and carefully validated for Finnish road conditions. A summary of calibration parameters is also presented. The new base value for straight-through lanes is 1, 940 vehicles per hour; the previous value was 1, 700 vehicles per hour. In general, the updated saturation flow values of different lane types are 5 to 20 percent larger than the previous base values. The saturation flow models of different lane types are described. The effects of geometric and traffic composition factors, such as percentage of turning vehicles, traffic composition, lane width, and approach grade, were examined and modeled. Effects of weather, road surface, light conditions, and speed level were also analyzed. The drop in saturation flow was about 20 to 30 percent under slippery road and snowy conditions. In rainy conditions, the drop was smaller, about 10 percent. The effect of speed on saturation flow is also described. The most important results of this 2-year project are the saturation flow values for different lane types, knowledge of the effect of external factors (especially during winter), and the large database, which can be used for other purposes. The possibility of using special signal control programs under bad road conditions is discussed. With these kinds of programs, better safety and higher capacity can be achieved.


Sign in / Sign up

Export Citation Format

Share Document