scholarly journals STRUCTURE OF FREEZING TALIK UNDER LAKE AT THE PARISENTO FIELD STATION (GYDAN PENINSULA) ACCORDING TO ELECTRICAL RESISTIVITY TOMOGRAPHY

2019 ◽  
Vol 2 (2) ◽  
pp. 103-110
Author(s):  
Alexandr Shein ◽  
Vladimir Olenchenko ◽  
Yaroslav Kamnev ◽  
Anton Sinitskiy

The article presents the results of studies of freezing talik under lake with using of electrical resistivity tomography. The research was conducted on one of paleolake – khasyrey. The measurements performed in two perpendicular profiles by pole-dipole array with a maximum spacing of 435 m. According to results of two-dimensional inversion, an area of low electrical resistivity of rocks at a depth of 25-30 m associated with a freezing talik under lake was identified. It was determined that the depth of freezing within drained lake for the period from 1996 to 2018 is 17-22 m. The approximate rate of freezing is 1 m/year. Formation of talik have a resistance of 5-15 Ω·m. Frozen formations in the contours of young paleolake have apparent resistivity hundreds Ω·m. Within the boundaries of the more ancient khasyrey apparent resistivity of the frozen rocks up to several thousand Ω·m.

2017 ◽  
Vol 22 (4) ◽  
pp. 411-420
Author(s):  
Adam F. Majzoub ◽  
Kevin W. Stafford ◽  
Wesley A. Brown ◽  
Jon T. Ehrhart

The Delaware Basin of W Texas and SE New Mexico is the western subdivision of the Permian Basin and a northern extension of the Chihuahuan Desert. The major evaporite unit within the Delaware Basin is the Castile Formation, which consists of gypsum/anhydrite and is highly susceptible to dissolution and karstification. Manifestations of karst within the Castile outcrop are abundant and include sinkholes, subsidence features and caves, both epigene and hypogene in origin. Land reconnaissance surveys conducted during 2015 and 2016 documented abundant karst landforms near major thoroughfares in Culberson County, Texas. Two dimensional (2D) electrical resistivity surveys were conducted at four sites to characterize and delineate karst related hazards, both laterally and vertically, associated with the road. The electrical resistivity data were collected with a multi-electrode earth resistivity meter using a dipole-dipole array configuration. The resistivity data were then processed using EarthImager2D to produce inverted profile sections of each site. Two-dimensional electrical resistivity tomography was shown to be an effective non-invasive method in detecting solution conduits, soil filled voids, and fractured bedrock in the shallow subsurface in addition to those directly observed on the surface.


2020 ◽  
Vol 10 (12) ◽  
pp. 4149
Author(s):  
Daniel Bravo ◽  
Javier Benavides-Erazo

Cadmium (Cd) is a non-essential heavy metal naturally occurring in the earth’s crust or due to anthropogenic activity. The presence of this metal in cacao farm soils represents a significant issue as levels are now regulated in products derived from cacao beans (Theobroma cacao L.). Several strategies have been proposed to measure cadmium levels; however, little is known regarding in situ non-destructive and time efficient techniques to analyze Cd contents in both cacao topsoils and subsoils, particularly nearby the root system. Therefore, this research aims to integrate the physical property of soil resistivity to Cd content in cacao soils. Cd hot spots are estimated from resistivity measurements using a two-dimensional electrical resistivity tomography (2D-ERT) technique and correlated to Cd determination using inductively coupled plasma optical emission spectrometry (ICP-OES). To assess the dynamics of soil Cd content the correlation is discussed with other physical chemical parameters of soils (pH, organic matter, Ca, Fe, and P). The study was performed in 27 cacao farms in Colombia. A farm in Santander district proved to have the highest level of Cd using the correlated techniques (2.76 mg·kg−1 Cd and 1815 Ohm·m) followed by farms in Boyacá and Arauca districts (2.6 and 0.66 mg·kg−1 Cd, related to 1616 and 743 Ohm·m, respectively). A high correlation between 2D-ERT and Cd determination (R2 = 0.87) was found. The discussion regarding the soil parameters analyzed suggests that the 2D-ERT technique could be used as a preliminary approach to explore Cd distribution in cacao soils.


2019 ◽  
Vol 265 ◽  
pp. 03005
Author(s):  
Dmitriy Gorbach ◽  
Valeriya Yakimenko ◽  
Olga Konovalova

The paper reviews methods of engineering geophysics which can be applied to sections of railway tracks. The method of electrical resistivity tomography is used to study the properties of the geological situation under an engineering structure. In the course of practical work, two-dimensional geoelectric sections were obtained. Interpretation of the sections allowed to understand the structure of the near-surface zone.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Tao Zhu ◽  
Jian-Guo Zhou ◽  
Jin-Qi Hao

Three measuring lines were arranged on one of free planes of magnetite cuboid samples. Apparent resistivity data were acquired by MIR-2007 resistivity meter when samples were under uniaxial compression of servocontrol YAW-5000F loadingmachine in laboratory. Then we constructed the residual resistivity images using electrical resistivity tomography (ERT) and plotted the diagrams of apparent resistivity anisotropy coefficient (ARAC)λ∗and the included angleαbetween the major axis of apparent resistivity anisotropy ellipse and the axis of load with pressure and effective depth. Our results show that with increasing pressure, resistivity and the decreased (D region) and increased (I region) resistivity regions have complex behaviors, but when pressure is higher than a certain value, the average resistivity decrease and the area of D region expand gradually in all time with the increase of pressure, which may be significant to the monitoring and prediction of earthquake, volcanic activities, and large-scale geologic motions. The effects of pressure onλ∗andαare not very outstanding for dry magnetite samples.


Author(s):  
O. F. Ogunlana ◽  
O. M. Alile ◽  
O. J. Airen

The Electrical Resistivity Tomography (ERT) data was acquired within the area suspected to have high potential for bitumen occurrence using the Wenner-Schlumberger configuration in Agbabu, southwestern Nigeria. PASI 16GL-N Earth resistivity meter instrument was used to acquire data along five (5) traverses with 5m electrode spacing and traverses length of 150m. The apparent resistivity values obtained was processed using RES2DINV software which helped to automatically obtain the 2D inversion model of the subsurface. This study has shown the occurrence of bitumen between the depth of 13.4m and 9.93m for Traverses 1, 2, 3 and Traverses 4, 5 respectively in a 2-Dimensional electrical resistivity images for boreholes with a depth of about 18m. The results indicate that the bitumen is characterized by good lateral continuity and is sufficiently thick for commercial exploitation.


2000 ◽  
Vol 22 ◽  
Author(s):  
Dipak Raj Pant

Aspects related to the development of a technique called electrical resistance tomography for producing two- or three­ dimensional subsurface images of an aquifer have been discussed. The technique is based on the automated measurement and computerised analysis of electrical resistivity changes caused by natural or man-made processes. A subsurface region of the aquifer to be studied is sampled by transmitting electrical energy through it along many paths of known orientations, and the apparent resistivity data derived are used to construct a cross-section al image of the region of interest. The physical model experiments and field experiments show that the presented method is effective and flexible for crosshole resistivity imaging of aquifer with bipole-bipole electrode configurations.


2020 ◽  
Author(s):  
Laurent Gourdol ◽  
Rémi Clément ◽  
Jérôme Juilleret ◽  
Laurent Pfister ◽  
Christophe Hissler

Abstract. Within the Critical Zone, regolith plays a key role in the fundamental hydrological functions of water collection, storage, mixing and release. Electrical Resistivity Tomography (ERT) is recognized as a remarkable tool for characterizing the geometry and properties of the regolith, overcoming limitations inherent to conventional borehole-based investigations. For exploring shallow layers, a small electrode spacing (ES) will provide a denser set of apparent resistivity measurements of the subsurface. As this option is cumbersome and time-consuming, smaller ES – albeit offering poorer shallow apparent resistivity data – are often preferred for large horizontal ERT surveys. To investigate the negative trade-off between larger ES and reduced accuracy of the inverted ERT images for shallow layers, we use a set of synthetic conductive/resistive/conductive three-layered soil–saprock/saprolite–bedrock models in combination with a reference field dataset. Our results suggest that an increase in ES causes a deterioration of the accuracy of the inverted ERT images in terms of both resistivity distribution and interface delineation and, most importantly, that this degradation increases sharply when the ES exceeds the thickness of the top subsurface layer. This finding, which is obvious for the characterization of shallow layers, is also relevant even when solely aiming for the characterization of deeper layers. We show that an oversized ES leads to overestimations of depth to bedrock and that this overestimation is even more important for subsurface structures with high resistivity contrast. To overcome this limitation, we propose adding interpolated levels of surficial apparent resistivity relying on a limited number of ERT profiles with a smaller ES. We demonstrate that our protocol significantly improves the accuracy of ERT profiles when using large ES, provided that the top layer has a rather constant thickness and resistivity. For the specific case of large-scale ERT surveys the proposed upgrading procedure is cost-effective in comparison to protocols based on small ES.


Geosciences ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 380
Author(s):  
Marilena Cozzolino ◽  
Paolo Mauriello ◽  
Domenico Patella

About a decade ago, the PERTI algorithm was launched as a tool for a data-adaptive probability-based analysis of electrical resistivity tomography datasets. It proved to be an easy and versatile inversion method providing estimates of the resistivity values within a surveyed volume as weighted averages of the whole apparent resistivity dataset. In this paper, with the aim of improving the interpretative process, the PERTI method is extended by exploiting some peculiar aspects of the general theory of probability. Bernoulli’s conceptual scheme is assumed to comply with any resistivity dataset, which allows a multiplicity of mutually independent subsets to be extracted and analysed singularly. A standard least squares procedure is at last adopted for the statistical determination of the model resistivity at each point of the surveyed volume as the slope of a linear equation that relates the multiplicity of the resistivity estimates from the extracted data subsets. A 2D synthetic test and a field apparent resistivity dataset collected for archaeological purposes are discussed using the new extended PERTI (E-PERTI) approach. The comparison with the results from the original PERTI shows that by the E-PERTI approach a significantly greater robustness against noise can be achieved, besides a general optimisation of the estimates of the most probable resistivity values.


Sign in / Sign up

Export Citation Format

Share Document