scholarly journals Manganese Catalyzed Reformation of Ethylene Glycol to Glycolic acid and Lactic Acid

Author(s):  
Satyadeep Waiba ◽  
BIplab Maji

Conversion of readily available feedstocks to valuable platform chemicals via a sustainable catalytic pathway has always been one of the key focuses of synthetic chemists. Cheaper, less toxic, and more abundant base metals as a catalyst for performing such transformations provide an additional boost. In this context, herein, we report a reformation of readily available feedstock, ethylene glycol, to value-added platform molecules, glycolic acid, and lactic acid. A bench stable base metal complex {[HN(C2H4PPh2)2]Mn(CO)2Br}, Mn-I, known as Mn-PhMACHO, catalyzed the reformation of ethylene glycol to glycolic acid at 140 oC in high selectivity with a turnover number TON = 2400, surpassing previously used homogeneous catalysts for such a reaction. Pure hydrogen gas is evolved without the need for an acceptor. On the other hand, a bench stable Mn(I)-complex, {(iPrPN5P)Mn(CO)2Br}, Mn-III, with a triazine backbone, efficiently catalyzed the acceptorless dehydrogenative coupling of ethylene glycol and methanol for the synthesis of lactic acid, even at a ppm level of catalyst loading, reaching the TON of 11,500. Detailed mechanistic studies were performed to elucidate the involvements of different manganese(I)-species during the catalysis.

2014 ◽  
Vol 80 (24) ◽  
pp. 7631-7639 ◽  
Author(s):  
Tae Sun Kang ◽  
Darren R. Korber ◽  
Takuji Tanaka

ABSTRACTLactobacillus panisPM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact thatL. panisPM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly,L. panisPM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes ofEscherichia coli, was introduced intoL. panisPM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production.


Author(s):  
Paul Van hee ◽  
Hugo Neels ◽  
Mireille De Doncker ◽  
Nicolas Vrydags ◽  
Katinka Schatteman ◽  
...  

AbstractAnalysis of blood of severely intoxicated patients always requires prompt investigation. Diagnosis of intoxication with ethylene glycol, γ-hydroxybutyric acid or D-lactic acid takes hours, since several different procedures are required. Rapid derivatization of the common hydroxyl function may resolve this analytical problem.Here we describe a fast method for the simultaneous measurement of ethylene glycol, glycolic acid, γ-hydroxybutyric acid and racemic lactic acid. Only 20 µl of serum, plasma or urine are required for immediate derivatization at 70°C with 750 µl of bis-N,O-trimethylsilyl trifluoroacetamide after adding 20 µl of internal standard solution (1,3-propylene glycol) and 20 µl of the catalyst dimethylformamide. After centrifugation an aliquot is transferred to a gas chromatographic system and analyzed with electron-impact mass spectrometry in selective ion monitoring mode.The derivatized acids and ethylene glycol are well separated and detected with a limit of detection ranging from 0.12 mg/l for ethylene glycol to 0.95 mg/l for γ-hydroxybutyric acid, while the limit of quantification ranged from 0.4 mg/l for ethylene glycol to 3.15 mg/l for γ-hydroxybutyric acid. The method is linear from 0.5 to 1800 mg/l blood for ethylene glycol, from 0.7 to 1200 mg/l for lactic acid, from 1.2 to 1800 mg/l for glycolic acid, and from 3.2 to 200 mg/l for γ-hydroxybutyric acid, with analytical recoveries, accuracy, day-to-day and within-day precision well within the required limits. Total analysis time with one calibrator was 30 min, derivatization time included.This method is very suitable for emergency toxicology, since several toxic substances can be quantified simultaneously in a fast and sensitive manner.


2007 ◽  
Vol 6 (3) ◽  
pp. 128-130
Author(s):  
Partha Kar ◽  
◽  
V Walker ◽  
Patrick Sharp ◽  
◽  
...  

Lactic acidosis can be caused by a variety of pathological conditions. We present a case of recurrent ‘lactic’ acidosis, which was eventually diagnosed to be secondary to ethylene glycol poisoning. Though there are a handful of cases reported in the literature, it is not widely known that glycolic acid (a metabolite of ethylene glycol) is measured spuriously as lactic acid by some point of care analysers. Literature review would indicate that this is a rare but potentially confounding factor in diagnosis. Given the nature of the pathology, we would suggest that greater awareness of the problem is important.


Sign in / Sign up

Export Citation Format

Share Document