scholarly journals Molecular understanding of GPR120 agonist binding using homology modeling and molecular dynamics

Author(s):  
suyash pant ◽  
V Ravichandiran

The toll of type-2 diabetes and associated complications are continues, efforts to identify possible targets are ongoing. Free fatty acid receptor 4 (FFAR4/GPR120) has been recently identified to be a promising therapeutic target for a group of metabolic associated disorders. For the prevention of type 2 diabetes, significant scientific and commercial interest has been developed around GPR120 and its role. Due to the unavailability of a crystal structure, the interaction dynamics of GPR120 agonists were not yet determined to date. In the present study, we constructed the homology model for GPR120 and validated using available mutational data and molecular dynamics simulation, and explored its binding modes with known small molecule agonists. So, sixteen propionic acid derivatives as GPR120 agonists were collected to elucidate their binding modes. Experiential and theoretical studies suggested that the carboxylic group of ligands interact with Arg99, which is an important interaction for GPR120 activation. However, earlier reports also suggest that this interaction is not stable during the molecular dynamics simulation, which contradicts the experimental observations. Evidently, to refute this, we got a stable interaction of Arg99 with TUG891 and other recently reported 15 GPR120 agonists. In addition, we have also observed that in 1 µs molecular dynamics simulation Arg183 present in ECL2 tends to come inside and interact with ligand. Molecular dynamics simulation study provides a list of key hotspot residues which play an important role in ligand binding. The homology model and results provides could be further utilized as a powerful template to accelerate the research in this field.

2020 ◽  
Author(s):  
Han Jun ◽  
Liangzi Fang ◽  
Qinfang Zheng

Abstract BackgroundAlthough the clinical effect of stir-fried Dolichos lablab L. kernel has been approved in modern traditional Chinese medicine, existing associated studies mainly focus on its clinical studies and chemical ingredients. However, there are few studies on pharmacodynamics material basis and molecular mechanism of stirfried Dolichos lablab L. kernel in treatment of type-2 diabetes(T2DM), thus restricting the further development and utilization of stir-fried Dolichos lablab L. kernel.MethodsA qualitative analysis on saponin chemical ingredients of stir-fried Dolichos lablab L. kernel was performed using UHPLC-Q-Exactive Orbitrap MS. A total of 10 saponin ingredients were selected. Moreover, target screening, biological process and metabolism pathway analysis were accomplished by network pharmacology. Four key proteins(EGFR, IGF1, MAPK1 and PIK3R1) of type-2 diabetes were selected for molecular docking verification with saponin ingredients. Specifically, molecular dynamics simulation of ingredients which have strong bindings with proteins was conducted. ResultsIn this study, 16 saponin ingredients were identified from stir-fried Dolichos lablab L. kernel. There were 91 intersection targets and the KEGG pathway enrichment involved 20 relevant pathways. According to the molecular docking verification, saponin ingredients of stir-fried Dolichos lablab L. kernel can form stable binding with key protein targets. The molecular dynamics simulation further verifies stability and reasonability of the docking results. ConclusionsThis study provides references to identification of efficient ingredients of stir-fried Dolichos lablab L. kernel, screening of quality markers and explanation of relevant action mechanism by combining UHPLC-Q-Exactive Orbitrap MS and network pharmacology.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 686 ◽  
Author(s):  
Alexander Neumann ◽  
Viktor Engel ◽  
Andhika B. Mahardhika ◽  
Clara T. Schoeder ◽  
Vigneshwaran Namasivayam ◽  
...  

GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target.


FEBS Open Bio ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 557-570 ◽  
Author(s):  
Mikiya Satoh ◽  
Hajime Saburi ◽  
Tomoyuki Tanaka ◽  
Yoshinori Matsuura ◽  
Hisashi Naitow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document