scholarly journals Electronic Stetoscope Design And Analysis Application Of Heart Sound With Digital Signal Processing

2015 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
Arya Adhi Nugraha

In this paper and has implemented a stethoscope electronic application sound analysis in heart client-server. A stethoscope electronics will catch a heart and menghantarkannya to computer so that the computer can sound mendigitalisasi heart. The application will process, sound analysis heart store and display a heart condition and sound spectrum of the heart. Extraction habitude anything undertaken to gain special habitude from the heart to perform the process of decomposing paket wavelet and root mean square ( rms ) at the sound of the heart. From the data obtained, in different heart conditions, decomposition of wavelet package give value range min 6 up to a maximum of 23 is much larger and RMS only give minimal range 0.04 to 0.16 in band 0-125Hz of variations of the same types of heart conditions. Sample Data obtained from 5 persons recorded sound his heart and then analyzed with the same two methods. The Data obtained are more closer to the normal heart sound so it can be deduced from the 5 sample data used is the sound of the heart under normal conditions.

2011 ◽  
Vol 121-126 ◽  
pp. 872-876
Author(s):  
Ye Wei Tao ◽  
Xie Feng Cheng ◽  
Shu Yang He ◽  
Yan Ping Ge ◽  
Yan Hong Huang

A heart sounds signal generator in the heart sound analysis instrument based on the LabVIEW is devised. The instrument is developed in PC. Heart sounds signal generator can according to need to produce a synthetic heart sounds signal for users to learn and use. The parameters setting are also discussed to find out the best for the each part. All the parameters can be set by user and the best ones are default values so that the instrument can fit other environment. The running test of this instrument proves it can generate and play heart sound precisely,and can be used as an assistance to show, play, and analyze heart sound


2020 ◽  
Vol 65 (4) ◽  
pp. 447-459
Author(s):  
Mehmet Eylem Kirlangic ◽  
Safwan Al-Qadhi ◽  
Christian Hauptmann ◽  
Hans-Joachim Freund

AbstractCoordination and timing in repetitive movements have been intensively investigated in diverse experimental settings for understanding the underlying basic mechanisms in healthy controls. On this basic research side, there are mainly two theoretical models: the Wing-Kristofferson (WK) model and the Haken-Kelso-Bunz (HKB) model. On the clinical side of the research, several efforts have been spent on quantitatively assessing gait and other repetitive movements such as tapping, especially as an outcome measure of clinical trials in diverse neurological disorders. Nevertheless, Parkinson’s disease (PD) remains the predominant disorder in the clinical literature in this context, as the tremor activity and the changes in the gait are both common symptoms in PD. Although there are motion recording systems for data acquisition in clinical settings, the tools for analysis and quantification of the extracted time-series offered by these systems are severely restricted. Therefore, we introduce a toolbox which enables the analysis of repetitive movements within the framework of the two main theoretical models of motor coordination, which explicitly focuses on varying clinical and experimental settings such as self-paced vs. cued or uni-manual vs. bi-manual measurements. The toolbox contains particular pipelines for digital signal processing. Licensed under the GNU General Public License (GNU-GPL), the open source toolbox is freely available and can be downloaded from the Github link: https://github.com/MehmetEylemKirlangic/RepetitiveMovementAnalysis. We illustrate the application of the toolbox on sample experiments of gait and tapping with a control subject, as well as with a Parkinson’s patient. The patient has gone through a brain surgery for deep brain stimulation (DBS); hence, we present the results for both stimulation ON and stimulation OFF modes. Sample data are freely accessible at: https://github.com/MehmetEylemKirlangic/DATA.


2017 ◽  
Vol 38 (8) ◽  
pp. E10-E25 ◽  
Author(s):  
Gari D Clifford ◽  
Chengyu Liu ◽  
Benjamin Moody ◽  
Jose Millet ◽  
Samuel Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document