scholarly journals Drug Release Studies of SC-514 PLGA Nanoparticles

Author(s):  
Famuyiwa Toluleke Oloruntobi ◽  
Bowers Zoey ◽  
Bentley Austin ◽  
Caraballo Davian ◽  
Subtil Paulynice ◽  
...  

A major problem associated with prostate cancer treatment is the development of drug resistance. The development of drug resistance often leads to prostate cancer metastasis and prostate cancer-targeted drug delivery systems can be utilized to address this problem. Traditional drug delivery systems have many challenges, including the inability to control the drug release rate, target site inaccuracy, susceptibility to the microenvironment, poor drug solubility, and cytotoxicity of chemotherapeutics to non-malignant cells. As a result, there is an urgent need to formulate and functionalize a drug delivery system that better controls drug release. This study was designed to quantify the release of SC-514 from SC-514 Polylactic-Co-Glycolic Acid (PLGA) nanoparticles and conjugate SC-514-PLGA coated nanoparticles with the NF- κβ antibody, as well as fats. This study further explored new methods to quantify the release of SC-514 drug from the SC-514-PLGA coated nanoparticles after utilizing Liquid Chromatography–Mass Spectrometry (LC-MS) as the standard method to quantify SC-514 drug released. After quantification was completed, cell viability studies indicated that the ligand conjugated nanoparticles demonstrated a considerable ability to reduce tumor growth and SC-514 drug toxicity in the PC-3 cell line. The prepared drug delivery systems also possessed a significantly lower toxicity (P<0.05), bettered controlled-release behaviors in prostate cancer, and increased the solubility of SC-514 in comparison to free SC-514. SC-514 released from SC-514-PLGA, SC-514-PLGA-NF- κβAb, and SC-514-PLGA-Fat nanoparticles, significantly inhibited tumor growth when compared to that of free SC-514. The anti-cancer therapeutic effects of SC-514 were improved through the encapsulation of SC-514 with a PLGA polymer. The functionalized SC-514-PLGA nanoparticles can further control burst release. The new methods utilized in this study for quantifying drug release, may prove to be as effective as the current standard methods, such as LC/MS.

Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


2017 ◽  
Vol 18 (11) ◽  
Author(s):  
Rohit R. Bhosale ◽  
H. V. Gangadharappa ◽  
Umme Hani ◽  
Riyaz Ali M. Osmani ◽  
Rudra Vaghela ◽  
...  

2018 ◽  
Vol 18 (10) ◽  
pp. 857-880 ◽  
Author(s):  
Salma E. Ahmed ◽  
Nahid Awad ◽  
Vinod Paul ◽  
Hesham G. Moussa ◽  
Ghaleb A. Husseini

Conventional chemotherapeutics lack the specificity and controllability, thus may poison healthy cells while attempting to kill cancerous ones. Newly developed nano-drug delivery systems have shown promise in delivering anti-tumor agents with enhanced stability, durability and overall performance; especially when used along with targeting and triggering techniques. This work traces back the history of chemotherapy, addressing the main challenges that have encouraged the medical researchers to seek a sanctuary in nanotechnological-based drug delivery systems that are grafted with appropriate targeting techniques and drug release mechanisms. A special focus will be directed to acoustically triggered liposomes encapsulating doxorubicin.


2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.


Author(s):  
Peng Xie ◽  
Yushu Wang ◽  
Dengshuai Wei ◽  
Lingpu Zhang ◽  
Bin Zhang ◽  
...  

The mechanisms of chemoresistance and nanoparticle-based drug delivery systems for platinum drugs were detailed summarized in this review. The current combination therapy provided an effective strategy to overcome the platinum drug resistance.


2018 ◽  
Vol 244 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Stephen J. Jones ◽  
Annette F. Taylor ◽  
Paul A Beales

Nanomedicines for controlled drug release provide temporal and spatial regulation of drug bioavailability in the body. The timing of drug release is usually engineered either for slow gradual release over an extended period of time or for rapid release triggered by a specific change in its physicochemical environment. However, between these two extremes, there is the desirable possibility of adaptive nanomedicines that dynamically modulate drug release in tune with its changing environment. Adaptation and response through communication with its environment is a fundamental trait of living systems; therefore, the design of biomimetic nanomedicines through the approaches of bottom-up synthetic biology provides a viable route to this goal. This could enable drug delivery systems to optimize release in synchronicity with the body’s natural biological rhythms and the personalized physiological characteristics of the patient, e.g. their metabolic rate. Living systems achieve this responsiveness through feedback-controlled biochemical processes that regulate their functional outputs. Towards this goal of adaptive drug delivery systems, we review the general benefits of nanomedicine formulations, provide existing examples of experimental nanomedicines that encapsulate the metabolic function of enzymes, and give relevant examples of feedback-controlled chemical systems. These are the underpinning concepts that hold promise to be combined to form novel adaptive release systems. Furthermore, we motivate the advantages of adaptive release through chronobiological examples. By providing a brief review of these topics and an assessment of the state of the art, we aim to provide a useful resource to accelerate developments in this field. Impact statement The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel “chrononanomedicines.”


Sign in / Sign up

Export Citation Format

Share Document