Nanostructured Ketorolac-Tromethamine/MCF: Synthesis, Characterization and Application in Drug Release System

2018 ◽  
Vol 14 (5) ◽  
pp. 432-439 ◽  
Author(s):  
Juliana M. Juarez ◽  
Jorgelina Cussa ◽  
Marcos B. Gomez Costa ◽  
Oscar A. Anunziata

Background: Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured Cellular Foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity. Methods: Ketorolac-Tromethamine/MCF composite was synthesized. The material synthesis and loading of ketorolac-tromethamine into MCF pores were successful as shown by XRD, FTIR, TGA, TEM and textural analyses. Results: We obtained promising results for controlled drug release using the novel MCF material. The application of these materials in KETO release is innovative, achieving an initial high release rate and then maintaining a constant rate at high times. This allows keeping drug concentration within the range of therapeutic efficacy, being highly applicable for the treatment of diseases that need a rapid response. The release of KETO/MCF was compared with other containers of KETO (KETO/SBA-15) and commercial tablets. Conclusion: The best model to fit experimental data was Ritger-Peppas equation. Other models used in this work could not properly explain the controlled drug release of this material. The predominant release of KETO from MCF was non-Fickian diffusion.

RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 19604-19610 ◽  
Author(s):  
Xiaofang Qi ◽  
Lu Xiong ◽  
Jing Peng ◽  
Dongyan Tang

One major issue in thermosensitive drug delivery systems is the remote, repeatable control of temperature in vivo through external stimuli such as light, ultrasound, and magnetic field.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 87-93
Author(s):  
AS Bansode ◽  
K Sarvanan

Novel drug delivery systems (NDDS) are the key area of pharmaceutical research and Development. The reason is relatively low development cost and time required for introducing a NDDS as compared to new chemical entity. Many conventional drug delivery systems have been designed to modulate the release a drug over an extended period of a time. Various designs are available to control or modulate the drug release from a dosage forms. Majority of oral CR dosage forms fall in the category of matrix, reservoir or osmotic systems. Osmotically controlled drug delivery systems (OCDDS) is one of the most promising drug delivery technology that use osmotic pressure as a driving force for controlled delivery of active agents. Drug release from OCDDS is independent of pH and hydrodynamic conditions of the body because of the semipermeable nature of the Rate controlling membrane and the design of deliver orifice used in osmotic systems, so a high degree of In vitro/In vivo correlation is achieved. Osmotic drug delivery systems release the drug with the zero order kinetics which does not depend on the initial concentration and the physiological factors of GIT. This review brings out new technologies, fabrication and recent clinical research in osmotic drug delivery. Keywords: Osmotic, Matrix, Reservoir, Fabrication


Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


2018 ◽  
Vol 244 (4) ◽  
pp. 283-293 ◽  
Author(s):  
Stephen J. Jones ◽  
Annette F. Taylor ◽  
Paul A Beales

Nanomedicines for controlled drug release provide temporal and spatial regulation of drug bioavailability in the body. The timing of drug release is usually engineered either for slow gradual release over an extended period of time or for rapid release triggered by a specific change in its physicochemical environment. However, between these two extremes, there is the desirable possibility of adaptive nanomedicines that dynamically modulate drug release in tune with its changing environment. Adaptation and response through communication with its environment is a fundamental trait of living systems; therefore, the design of biomimetic nanomedicines through the approaches of bottom-up synthetic biology provides a viable route to this goal. This could enable drug delivery systems to optimize release in synchronicity with the body’s natural biological rhythms and the personalized physiological characteristics of the patient, e.g. their metabolic rate. Living systems achieve this responsiveness through feedback-controlled biochemical processes that regulate their functional outputs. Towards this goal of adaptive drug delivery systems, we review the general benefits of nanomedicine formulations, provide existing examples of experimental nanomedicines that encapsulate the metabolic function of enzymes, and give relevant examples of feedback-controlled chemical systems. These are the underpinning concepts that hold promise to be combined to form novel adaptive release systems. Furthermore, we motivate the advantages of adaptive release through chronobiological examples. By providing a brief review of these topics and an assessment of the state of the art, we aim to provide a useful resource to accelerate developments in this field. Impact statement The timing and rate of release of pharmaceuticals from advanced drug delivery systems is an important property that has received considerable attention in the scientific literature. Broadly, these mostly fall into two classes: controlled release with a prolonged release rate or triggered release where the drug is rapidly released in response to an environmental stimulus. This review aims to highlight the potential for developing adaptive release systems that more subtlety modulate the drug release profile through continuous communication with its environment facilitated through feedback control. By reviewing the key elements of this approach in one place (fundamental principles of nanomedicine, enzymatic nanoreactors for medical therapies and feedback-controlled chemical systems) and providing additional motivating case studies in the context of chronobiology, we hope to inspire innovative development of novel “chrononanomedicines.”


Nanoscale ◽  
2017 ◽  
Vol 9 (44) ◽  
pp. 17318-17324 ◽  
Author(s):  
Yanhua Li ◽  
Yuanyuan Chen ◽  
Wei Pan ◽  
Zhengze Yu ◽  
Limin Yang ◽  
...  

The fabrication of well-behaved drug delivery systems that can transport drugs to specifically treat cancer cells rather than normal cells is still a tremendous challenge.


2005 ◽  
Vol 04 (05n06) ◽  
pp. 855-861 ◽  
Author(s):  
MARTIN GARNETT

The use of nanosized materials changes the way in which drugs are handled by the body and offers opportunities to improve drug delivery. The physiological mechanisms controlling the distribution of nanosized materials (enhanced permeability and retention effect, cellular uptake pathways and opsonisation/elimination of nanoparticles) are described. Two different nanosized drug delivery systems are considered; drug delivery and DNA delivery. The deficiencies of currently available biodegradable polymers for preparation of drug containing nanoparticles are mainly the amount of drug that can be incorporated and the rapid rate of drug release. The development of new biodegradable polymers which can interact with the drug and so significantly increase drug loading and decrease the rate of drug release are outlined. DNA delivery necessitates overcoming a variety of biological barriers. We are developing polyelectrolyte complexes of DNA with cationic polyamidoamines (PAA) as a delivery system. Complexing PAA with DNA results in good transfection of cells in vitro. However, in vivo, a more complex arrangement of PAA, Polyethylene glycol-PAA copolymers, DNA and the use of ligands will be required. Despite these efforts, further developments will be needed in nanotechnology for both drug and DNA nanoparticle delivery systems to achieve our clinical objectives.


Author(s):  
Ramesh D. Parmar ◽  
Rajesh K. Parikh ◽  
G. Vidyasagar ◽  
Dhaval V. Patel ◽  
Chirag J. Patel ◽  
...  

Pulsatile  Drug  Delivery  Systems  are  gaining  a  lot  of  interest  as  they  deliver  the  drug  at  the  right  place  at  the  right  time  and  in  the  right  amount,  thus  providing  spatial  and  temporal  delivery  and  increasing  patient  compliance.  These  systems  are  designed  according  to  the  circadian  rhythm  of  the  body.  The  principle  rationale  for  the  use  of  pulsatile  release  of  the  drugs is where  a  constant  drug  release  is  not  desired.  A  pulse  has  to  be  designed  in  such  a  way  that  a  complete  and  rapid  drug  release  is  achieved  after  the  lag  time.  Various  systems  like  capsular  systems,  osmotic  systems,  single-  and  multiple-unit  systems  based  on  the  use  of  soluble  or  erodible  polymer  coating  and  use  of  rupturable  membranes  have  been  dealt  with  in  the  article.  It  summarizes  the  latest  technological  developments,  formulation  parameters,  and  release  profiles  of  these  systems.  These  systems  are  beneficial  for  the  drugs  having  chronopharmacological  behavior  where  night  time  dosing  is  required,  such  as  anti-arhythmic  and  anti-asthmatic.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hao Pan ◽  
Yanjie Yu ◽  
Li Li ◽  
Bingmi Liu ◽  
Yu Liu

AbstractRecently, nanocarrier systems for cancer drugs, especially GO-based drug delivery systems, have become a boon for cancer patients. In this study, we choose Tau to functionalize the GO surface to improve its biocompatibility. Firstly, nano-scale GO was synthesized by the modified Hummer’s method and ultrasonic stripping method. The taurine-modified graphene oxide carrier (Tau-GO) was synthesized by chemical method to obtain Tau-GO that has a good dispersibility and stability in water, with a zeta potential of − 38.8 mV and a particle size of 242 nm. Based on the encapsulation efficiency evaluation criteria, the optimal formulation was determined to combine Tau-GO and 5-FU by non-covalent bonding. The 5-FU-Tau-GO was more stable in neutral environment than in acidic environment, and with a certain PH response and sustained release effect. In vivo, we compared oral and intravenous administrations of 5-FU and 5-FU-Tau-GO, respectively, using pharmacokinetic tests and related parameters and showed that 5-FU-Tau-GO oral or intravenous administration prolongs the action time of 5-FU in the body and improves its bioavailability. In addition, the inhibition of HepG2 cells that was measured by the MTT assay, showed that the IC50 value of 5-FU was 196 ± 8.73 μg/mL, and the IC50 value of 5-FU-Tau-GO was 65.2 ± 0.7 μg/mL, indicating that 5- FU-Tau-GO is more potent against HepG2 cells and has a stronger inhibitory effect on cancer cells. The effect on cell morphology that was measured using the AO/EB staining also showed that 5-FU-Tau-GO not only disrupted cells, but also significantly induced apoptosis compared to 5-FU. We also verified by computer aided design that Tau-GO can bind better to 5-FU than to the unmodified GO, and that the formed 5-FU-Tau-GO system is more stable, and conducive to the transfer and release of 5-FU in vivo.


Author(s):  
NILESH PATIL ◽  
RAJVEER BHASKAR ◽  
VISHAL VYAVHARE ◽  
RAHUL DHADGE ◽  
VAISHNAVI KHAIRE ◽  
...  

In recent years, interest in the development of novel drug delivery systems using nanoparticles has gained more attention. The nanoparticles offer several advantages over other conventional drug delivery systems. Nanoparticles have gained importance in technological advancements due to their modifiable physical, chemical and biological properties with improved performance over their bulk foils. Nanoparticles can simply move in the body due to their small size and reach very complex organs through diverse routes. The high stability, controlled drug release makes nanoparticles the most suitable drug delivery system. Along with all these advantages, they offer variety in routes of administration. Both hydrophilic, as well as hydrophobic drugs, can be delivered in the form of nanoparticles. Nanoparticles have been used as a physical approach to modify and advance the pharmacokinetics and pharmacodynamics possessions of various types of drug molecules. Thesol-gel technique is a stress-free and very inexpensive process to formulate metal oxides and permits control over the doping process or adding of transition metals, as related to other research techniques. The study of different methods of synthesis of nanoparticles is essential to obtain desired nanoparticles with specific sizes and shapes. They are suitable candidates for various marketable and local applications, which include imaging, catalysis medical applications and environmental applications. This review mainly focuses on approaches used for the production of nanoparticles and different methods of synthesis of nanoparticles such as physical, chemical and biological method.


Sign in / Sign up

Export Citation Format

Share Document