Recent Advances in Fluorescent Probes for Super-Resolution Microscopy

2021 ◽  
Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 217
Author(s):  
Na-Eun Choi ◽  
Ji-Yu Lee ◽  
Eun-Chae Park ◽  
Ju-Hee Lee ◽  
Jiyoun Lee

Recent advances in fluorescence imaging techniques and super-resolution microscopy have extended the applications of fluorescent probes in studying various cellular processes at the molecular level. Specifically, organelle-targeted probes have been commonly used to detect cellular metabolites and transient chemical messengers with high precision and have become invaluable tools to study biochemical pathways. Moreover, several recent studies reported various labeling strategies and novel chemical scaffolds to enhance target specificity and responsiveness. In this review, we will survey the most recent reports of organelle-targeted fluorescent probes and assess their general strategies and structural features on the basis of their target organelles. We will discuss the advantages of the currently used probes and the potential challenges in their application as well as future directions.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5964
Author(s):  
Sascha G. Keller ◽  
Mako Kamiya ◽  
Yasuteru Urano

The use of fluorescent probes in a multitude of applications is still an expanding field. This review covers the recent progress made in small molecular, spirocyclic xanthene-based probes containing different heteroatoms (e.g., oxygen, silicon, carbon) in position 10′. After a short introduction, we will focus on applications like the interaction of probes with enzymes and targeted labeling of organelles and proteins, detection of small molecules, as well as their use in therapeutics or diagnostics and super-resolution microscopy. Furthermore, the last part will summarize recent advances in the synthesis and understanding of their structure–behavior relationship including novel computational approaches.


2018 ◽  
Vol 141 (7) ◽  
pp. 2770-2781 ◽  
Author(s):  
Lu Wang ◽  
Michelle S. Frei ◽  
Aleksandar Salim ◽  
Kai Johnsson

2017 ◽  
Vol 112 (3) ◽  
pp. 21a
Author(s):  
Yuji Ishitsuka ◽  
Kai Wen Teng ◽  
Pin Ren ◽  
Yeoan Youn ◽  
Xiang Deng ◽  
...  

ACS Omega ◽  
2020 ◽  
Vol 5 (42) ◽  
pp. 26967-26977
Author(s):  
Aditya Yadav ◽  
Chethana Rao ◽  
Chayan K. Nandi

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Sejoo Jeong ◽  
Jerker Widengren ◽  
Jong-Chan Lee

Progress in developing fluorescent probes, such as fluorescent proteins, organic dyes, and fluorescent nanoparticles, is inseparable from the advancement in optical fluorescence microscopy. Super-resolution microscopy, or optical nanoscopy, overcame the far-field optical resolution limit, known as Abbe’s diffraction limit, by taking advantage of the photophysical properties of fluorescent probes. Therefore, fluorescent probes for super-resolution microscopy should meet the new requirements in the probes’ photophysical and photochemical properties. STED optical nanoscopy achieves super-resolution by depleting excited fluorophores at the periphery of an excitation laser beam using a depletion beam with a hollow core. An ideal fluorescent probe for STED nanoscopy must meet specific photophysical and photochemical properties, including high photostability, depletability at the depletion wavelength, low adverse excitability, and biocompatibility. This review introduces the requirements of fluorescent probes for STED nanoscopy and discusses the recent progress in the development of fluorescent probes, such as fluorescent proteins, organic dyes, and fluorescent nanoparticles, for the STED nanoscopy. The strengths and the limitations of the fluorescent probes are analyzed in detail.


2021 ◽  
Author(s):  
gangwei jiang ◽  
Tian-Bing Ren ◽  
Elisa D’Este ◽  
mengyi xiong ◽  
Bin Xiong ◽  
...  

Abstract The quality and application of super-resolution fluorescence imaging greatly lie in the properties of fluorescent probes. However, conventional fluorophores in a cellular environment often suffer from low brightness, poor photostability, and short Stokes shift (< 30 nm). Here we report a synergistic strategy to simultaneously improve such properties of regular fluorophores. Introduction of quinoxaline motif with fine-tuned electron density to conventional rhodamines generates new dyes with vibronic structure and inhibited twisted-intramolecular-charge-transfer (TICT) formation synchronously, thus increasing the brightness and photostability as well as Stokes shift. The new fluorophore BDQF-6 exhibits around twofold greater brightness (ε × Φ = 6.6 × 104 L·mol− 1·cm− 1) and Stokes shift (56 nm) than its parental fluorophore, Rhodamine B. Importantly, in Stimulated Emission Depletion (STED) microscopy, BDQF-6 derived probe possesses a superior photostability and thus renders threefold more frames than carbopyronine- and JF608-based probes, known as photostable fluorophores for STED imaging. More BDQF-6 derivatives were developed next, allowing us to perform wash-free organelles (mitochondria and lysosome) staining and protein labeling with ultrahigh signal-to-noise ratios (up to 106 folds) in confocal and STED microscopy of live cells, or two-photon and 3D STED microscopy of fixed cells. Furthermore, the strategy was well generalized to different types of dyes (pyronin, rhodol, coumarin, and Boranil), offering a new class of bright and photostable fluorescent probes with long Stokes shift (up to 136 nm) for bioimaging and biosensing.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Ast ◽  
Anastasia Arvaniti ◽  
Nicholas H. F. Fine ◽  
Daniela Nasteska ◽  
Fiona B. Ashford ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Sign in / Sign up

Export Citation Format

Share Document