scholarly journals Immune cell-based drug delivery system with biodegradable fluorescent nanoparticles for brain cancer treatment

Author(s):  
Kim Gloria ◽  
Sanabria Virginia ◽  
Dong Cheng ◽  
Yang Jian
2021 ◽  
Vol 332 ◽  
pp. 301-311
Author(s):  
Đorđe Cvjetinović ◽  
Željko Prijović ◽  
Drina Janković ◽  
Magdalena Radović ◽  
Marija Mirković ◽  
...  

2018 ◽  
Vol 17 (10) ◽  
pp. 668-688 ◽  
Author(s):  
N.M. Salkho ◽  
R.Z. Turki ◽  
O. Guessoum ◽  
A.M. Martins ◽  
R.F. Vitor ◽  
...  

2019 ◽  
Vol 104 ◽  
pp. 110001 ◽  
Author(s):  
Zhang-Qi Feng ◽  
Ke Yan ◽  
Jiacheng Li ◽  
Xuran Xu ◽  
Tao Yuan ◽  
...  

Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582092673
Author(s):  
Chuan Xie ◽  
Yan Zhan ◽  
Peng Wang ◽  
Bo Zhang ◽  
Yukun Zhang

Adipic dihydrazide and heparin were attached to ZnO quantum dots surface, and the ZnO-adipic dihydrazide-heparin nanocomplex was used as a drug delivery system to deliver paclitaxel for chemotherapy. The surface modification and the loading of paclitaxel were confirmed by Fourier transform infrared spectrum, featured by characteristic peaks from functional groups of adipic dihydrazide, heparin, and paclitaxel. The impacts of pH on the drug release were investigated, and the cytotoxicity studies were conducted with A549 cells. The pharmacokinetic study was conducted with male Wistar rats. Both in vitro and in vivo study indicated that ZnO-adipic dihydrazide-heparin-paclitaxel nanocomplex could deliver paclitaxel in a more controllable way, and it has the potential to be a high-efficiency drug delivery system for cancer treatment.


2021 ◽  
Vol 21 (2) ◽  
pp. 824-832
Author(s):  
Zhenzhen Fan ◽  
Qingsheng Liu ◽  
Fangfang Lu ◽  
Zhihui Dong ◽  
Peng Gao

Liver cancer has a high incidence and a poor prognosis, which seriously affects human health. Doxorubicin is one of the chemotherapeutics used in the treatment of tumours, but its severe adverse reactions, especially cardiac toxicity, have limited its clinical application. The nanometre drug delivery system enables drug-loaded nanoparticles to be specifically concentrated in tumour tissues, increasing cell uptake and improving curative effect. Therefore, in this paper, folic acid-modified mesoporous silica nanoparticles (MSN-NH2-PEG-FA) were synthesized by modifying the folic acid on the surface of a drug carrier by using the characteristics of the expression of folic acid receptors, and using it as a drug. The carrier was loaded with antitumor drug doxorubicin hydrochloride (DOX), and a nanometre drug delivery system (MSN-NH2-PEG-FA/DOX) was constructed. At the same time, the near-infrared dye Cy5 was used to mark the mother nucleus to construct fluorescent nanoparticles (MSN-NH2-PEG-FA/DOX-Cy5) for cell and tumour imaging, so as to obtain the abdominal image of liver cancer patients, thereby realizing diagnosis and treatment. The research results show that the carrier can specifically gather in the liver area, reduce the distribution in the heart, reduce the toxic and side effects of drugs, and prolong the survival time of patients. The results of this study provide new ideas for the treatment of liver cancer, and provide a new theoretical basis and experimental basis for the study of inorganic nanomaterials as targeted drug delivery systems.


2021 ◽  
Author(s):  
Victoria O. Shipunova ◽  
Elena N. Komedchikova ◽  
Anna S. Sogomonyan ◽  
Polina A. Kotelnikova ◽  
Maxim P. Nikitin ◽  
...  

Abstract The conventional methods of treating cancer with chemo- and radiotherapy present plenty of serious problems, such as low therapeutic index and high systemic toxicity. The advanced cancer treatment strategies utilize nanoformulations of drugs that can enter a tumor due to the enhanced permeability and retention (EPR) effect. However, EPR fails in the treatment of several human diseases. Mainstream biomedical studies are focused on creating the drugs that would enter the tumor with higher effectiveness and require smaller doses for administration. A two-stage drug delivery system is an encouraging alternative solution. At first, the primary, non-toxic targeting module is delivered to the tumor cells, followed by injection of the second complementary targeting module at a considerably lower dose, thus decreasing systemic toxicity. To meet the challenge, we have developed a two-stage drug delivery system (DDS), mediated by the high-affinity binding of the Barnase*Barstar protein pair. Barnase and Barstar act as lego bricks linking the first and the second modules on the surface of the cancer cell. Barnase (12 kDa) is a natural ribonuclease from Bacillus amyloliquefaciens, while Barstar (10 kDa) is its natural inhibitor. The Barnase*Barstar is one of the strongest known protein*protein complexes with Kaff = 1014 M−1 exhibiting extraordinarily stability in severe conditions. Artificial scaffold polypeptide DARPin9_29 genetically fused with Barstar served is a first module of the developed two-step DDS. DARPin9_29 (14 kDa) specifically recognizes the tumor marker HER2 overexpressed on human breast cancer cells. As a second module, a therapeutic nano-cargo was developed based on fluorescent polymer PLGA nanoparticles loaded with diagnostic Nile Blue dye and the chemotherapeutic drug doxorubicin. This nano-PLGA structure was covalently coupled to Barnase. We showed two-stage efficient labeling of HER2-overexpressing cancer cells using the first non-toxic module DARPin9_29-Barstar and the second toxic nano-module PLGA-Barnase. We demonstrated the doxorubicin-induced cytotoxicity of this two-step DDS based on polymer nanoparticles and proteinaceous Barnase-Barstar interface and showed more than 10-fold therapeutic dose reduction versus free doxorubicin. We believe that the developed two-step DDS based on PLGA nano-cargo and protein interface will promote the creation of new-generation cancer treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document