Application of Abdominal Imaging Based on Nano Drug Delivery System for Diagnosis and Treatment of Liver Cancer

2021 ◽  
Vol 21 (2) ◽  
pp. 824-832
Author(s):  
Zhenzhen Fan ◽  
Qingsheng Liu ◽  
Fangfang Lu ◽  
Zhihui Dong ◽  
Peng Gao

Liver cancer has a high incidence and a poor prognosis, which seriously affects human health. Doxorubicin is one of the chemotherapeutics used in the treatment of tumours, but its severe adverse reactions, especially cardiac toxicity, have limited its clinical application. The nanometre drug delivery system enables drug-loaded nanoparticles to be specifically concentrated in tumour tissues, increasing cell uptake and improving curative effect. Therefore, in this paper, folic acid-modified mesoporous silica nanoparticles (MSN-NH2-PEG-FA) were synthesized by modifying the folic acid on the surface of a drug carrier by using the characteristics of the expression of folic acid receptors, and using it as a drug. The carrier was loaded with antitumor drug doxorubicin hydrochloride (DOX), and a nanometre drug delivery system (MSN-NH2-PEG-FA/DOX) was constructed. At the same time, the near-infrared dye Cy5 was used to mark the mother nucleus to construct fluorescent nanoparticles (MSN-NH2-PEG-FA/DOX-Cy5) for cell and tumour imaging, so as to obtain the abdominal image of liver cancer patients, thereby realizing diagnosis and treatment. The research results show that the carrier can specifically gather in the liver area, reduce the distribution in the heart, reduce the toxic and side effects of drugs, and prolong the survival time of patients. The results of this study provide new ideas for the treatment of liver cancer, and provide a new theoretical basis and experimental basis for the study of inorganic nanomaterials as targeted drug delivery systems.

2018 ◽  
Vol 6 (39) ◽  
pp. 6269-6277 ◽  
Author(s):  
Yaya Cheng ◽  
Xiangyu Jiao ◽  
Liang Zhao ◽  
Yang Liu ◽  
Fang Wang ◽  
...  

Inspired by aquaporins in nature, herein, a biomimetic free-blocking on-demand drug delivery system is proposed, which is constructed by controlling the wettability of the inner surface of nanochannels on mesoporous silica nanoparticles (MSNs).


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3321
Author(s):  
Etienne J. Slapak ◽  
Lily Kong ◽  
Mouad el Mandili ◽  
Rienk Nieuwland ◽  
Alexander Kros ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) has the worst survival rate of all cancers. This poor prognosis results from the lack of efficient systemic treatment regimens, demanding high-dose chemotherapy that causes severe side effects. To overcome dose-dependent toxicities, we explored the efficacy of targeted drug delivery using a protease-dependent drug-release system. To this end, we developed a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSN) functionalized with an avidin–biotin gatekeeper system containing a protease linker that is specifically cleaved by tumor cells. Bioinformatic analysis identified ADAM9 as a PDAC-enriched protease, and PDAC cell-derived conditioned medium efficiently cleaved protease linkers containing ADAM9 substrates. Cleavage was PDAC specific as conditioned medium from leukocytes was unable to cleave the ADAM9 substrate. Protease linker-functionalized MSNs were efficiently capped with avidin, and cap removal was confirmed to occur in the presence of PDAC cell-derived ADAM9. Subsequent treatment of PDAC cells in vitro with paclitaxel-loaded MSNs indeed showed high cytotoxicity, whereas no cell death was observed in white blood cell-derived cell lines, confirming efficacy of the nanoparticle-mediated drug delivery system. Taken together, this research introduces a novel ADAM9-responsive, protease-dependent, drug delivery system for PDAC as a promising tool to reduce the cytotoxicity of systemic chemotherapy.


Author(s):  
Zilin Huang ◽  
Qiang Xie ◽  
Shuang Li ◽  
Yuhao Zhou ◽  
Zuhong He ◽  
...  

Hearing loss is one of the most common disabilities affecting both children and adults worldwide. However, traditional treatment of hearing loss has some limitations, particularly in terms of drug delivery system as well as diagnosis of ear imaging. The blood–labyrinth barrier (BLB), the barrier between the vasculature and fluids of the inner ear, restricts entry of most blood-borne compounds into inner ear tissues. Nanoparticles (NPs) have been demonstrated to have high biocompatibility, good degradation, and simple synthesis in the process of diagnosis and treatment, which are promising for medical applications in hearing loss. Although previous studies have shown that NPs have promising applications in the field of inner ear diseases, there is still a gap between biological research and clinical application. In this paper, we aim to summarize developments and challenges of NPs in diagnostics and treatment of hearing loss in recent years. This review may be useful to raise otology researchers’ awareness of effect of NPs on hearing diagnosis and treatment.


2018 ◽  
Vol 7 (4) ◽  
pp. 291-301 ◽  
Author(s):  
Zepeng Jiao ◽  
Bin Zhang ◽  
Chunya Li ◽  
Weicong Kuang ◽  
Jingxian Zhang ◽  
...  

Abstract A drug delivery system based on carboxymethyl cellulose-grafted graphene oxide loaded by methotrexate (MTX/CMC-GO) with pH-sensitive and controlled drug-release properties was developed in this work. CMC was grafted on graphene oxide by ethylenediamine through hydrothermal treatment. CMC serves as a pH-sensitive trigger, while CMC-GO serves as a drug-carrying vehicle due to the curved layer and large plain surface. Different amounts of drugs could be loaded into CMC-GO nanocarriers by control of the original amount of drug/carrier ratios. Additionally, low cytotoxicity against NIH-3T3 cells and low in vivo toxicity was observed. In vivo tumor growth inhibition assays showed that MTX/CMC-GO demonstrated superior antitumor activity than free MTX against HT-29 cells. Moreover, prolonged survival time of mice was observed after MTX/CMC-GO administration. The MTX/CMC-GO drug delivery system has a great potential in colon cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document