scholarly journals 3-D cell encapsulation in gelatin and elastin poly (ethylene glycol) hybrid hydrogel for elastic tissue remolding

Author(s):  
Cao Ye ◽  
Lee Bae Hoon ◽  
Peled Havazelet ◽  
Venkatraman Subbu
2018 ◽  
Vol 33 (2) ◽  
pp. 295-314 ◽  
Author(s):  
SS Patil ◽  
KC Nune ◽  
RDK Misra

A covalently cross-linked injectable hybrid hydrogel, namely, alginate/poly(amidoamine) (PAMAM), with the objective of cell delivery was innovatively designed and synthesized using tetra-amino-functional PAMAM dendrimer as the cross-linker. With the increase in percentage of PAMAM cross-linker, the pore size and swelling ratio of hydrogels were in the range of 57 ± 18 μm to 88 ± 25 μm and 110 ± 16 to 157 ± 20, respectively. The study of attachment and proliferation of MC3T3-E1 pre-osteoblasts using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay through indirect and direct contact methods indicated a continuous increase in metabolically active live cells with time, implying non-cytotoxicity of the synthesized hydrogel. The live–dead assay showed >95% of live cells for alginate/PAMAM hydrogels, suggesting viability of the encapsulated cells. When the percentage of PAMAM cross-linker in alginate/PAMAM hydrogel was increased from 5 to 25, the percentage degradation rate decreased from 1.1 to 0.29%/day. Given that the poly(ethylene glycol) is commonly used cross-linker for hydrogel syntheses, we compared the behavior with poly(ethylene glycol). The incorporation of poly(ethylene glycol) in alginate/PAMAM hydrogel reduced the activity of MC3T3-E1 cells and their viability compared to the alginate/PAMAM hydrogels. The protonation of amino groups in alginate/PAMAM injectables under physiological conditions led to the formation of cationic hydrogels. These cationic hydrogels showed enhanced cell encapsulation and attachment ability because of electrostatic interaction with negatively charged cell surface as determined by cell adhesion and extensions from scanning electron microscope and vinculin assay and ability of in situ calcium phosphate mineralization. These observations point toward the potential use as an injectable scaffold for cell delivery and tissue engineering applications.


2008 ◽  
Vol 1134 ◽  
Author(s):  
Tatiya Trongsatitkul ◽  
Bridgette Budhlall

AbstractThermoresponsive copolymers of poly(N- isopropyl acrylamide) (PNIPAm) and poly(acrylamide) microgels grafted with poly(ethylene glycol)(PEG) chains were synthesized by free-radical photopolymerization. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers with varying number-average molecular weights were used (Mn = 300 and 1,000 g/mol). A simple microarray technique coupled with a laser scanning confocal microscope (LSCM) was used to visualize the effect of temperature on the volume phase transition temperatures of the microgels. In general, increasing the concentration of PEGMA in the PNIPAm-co-Am-co-PEGMA copolymers resulted in a broader and higher lower critical solution temperature (LCST) compared to the PNIPAm microgels. We demonstrated that the PEGMA molecular weight and concentration influenced whether it was incorporated as a grafted copolymer or random copolymer in the PNIPAm microgel. The evidence for this is the shift in the LCST as determined by temperature and differential scanning calorimetry (DSC) measurements. This behavior suggests that incorporation of PEGMA in the copolymer depends on its hydrophilicity or water-solubility which in turn influenced the degree at which the copolymer chains collapsed from a coil-to-globule (volume phase transition) with increasing temperature.


Small ◽  
2019 ◽  
Vol 15 (20) ◽  
pp. 1900692 ◽  
Author(s):  
Luis P. B. Guerzoni ◽  
Jonas C. Rose ◽  
David B. Gehlen ◽  
Alexander Jans ◽  
Tamàs Haraszti ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (32) ◽  
pp. 18394-18405 ◽  
Author(s):  
Yicai Wang ◽  
Yuan Li ◽  
Xiaoling Yu ◽  
Qizhi Long ◽  
Tian Zhang

A novel acrylated poly(ethylene glycol)-co-poly(xylitol sebacate) (PEXS-A) hydrogel for 3D printing ink and cell encapsulation for tissue engineering application.


Sign in / Sign up

Export Citation Format

Share Document