scholarly journals Preparation and evaluation of three-dimensional chitosan/graphene oxide/hydroxyapatite porous scaffolds on the proliferation and differentiation of bone mesenchymal stem cells

Author(s):  
Long Jia ◽  
He Yanyan ◽  
Yang Yushi ◽  
Mao Zhou ◽  
Qiu Tong ◽  
...  
2021 ◽  
Author(s):  
Aifeng Liu ◽  
Jixin Chen ◽  
Shuwei Gong ◽  
Qiang Wei ◽  
Ye Yuan

Abstract The main role of the scaffold materials is to enable cells to survive in the scaffold binding as while as to further promote their proliferation and differentiation ability. For mesenchymal stem cell, the scaffold could provide an environment for them to maintain their phenotype, and synthesize all necessary molecules and proteins. Generally, scaffold materials for stem cell need to possess basic characteristics such as high porosity, large surface area, surface rigidity and biodegradability. Thus, the two-dimensional graphene oxide (GO) with oxygen-containing functional groups may be suitable scaffold materials for mesenchymal stem cell culture.MethodsIn this study, the effect of GO on the value-added differentiation activity of mesenchymal stem cell was systematically investigated. ResultsIt was found that low concentration of GO and sufficient concentration of umbilical cord mesenchymal stem cells are suitable for the second Co-culture. Furthermore, the addition of hyaluronic acid will make this culture more evenly distributed. ConclusionsThe adsorption of GO on umbilical cord mesenchymal stem cells can also make the two closely linked, which avoids the impact of animal joint activities on cells.


RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 9117-9125
Author(s):  
Ting Ma ◽  
Xi-Yuan Ge ◽  
Ke-Yi Hao ◽  
Xi Jiang ◽  
Yan Zheng ◽  
...  

Titanium discs with simple 3,4-dihydroxy-l-phenylalanine coating enhanced BM-MSC adhesion, spreading, proliferation and differentiation, and upregulated expression of genes involved in focal adhesion in vitro.


2021 ◽  
Author(s):  
Aifeng Liu ◽  
Jixin Chen ◽  
Shuwei Gong ◽  
Qiang Wei ◽  
Ye Yuan

Abstract Background: The main role of the scaffold materials is to enable cells to survive in the scaffold binding as while as to further promote their proliferation and differentiation ability. For mesenchymal stem cell, the scaffold could provide an environment for them to maintain their phenotype, and synthesize all necessary molecules and proteins. Generally, scaffold materials for stem cell need to possess basic characteristics such as high porosity, large surface area, surface rigidity and biodeg-radability. Thus, the two-dimensional graphene oxide (GO) with oxygen-containing functional groups may be suitable scaffold materials for mesenchymal stem cell culture. In this study, the effect of GO on the value-added differentiation activity of mesenchymal stem cell was systematically investigated. Results: It was found that low concentration of GO and sufficient concentration of umbilical cord mesenchymal stem cells are suitable for the second Co-culture. Furthermore, the addition of hyaluronic acid will make this culture more evenly distributed. Conclusions: The adsorption of GO on umbilical cord mesenchymal stem cells can also make the two closely linked, which avoids the impact of animal joint activities on cells.


2019 ◽  
Vol 10 ◽  
pp. 204173141982643 ◽  
Author(s):  
Chinmaya Mahapatra ◽  
Jung-Ju Kim ◽  
Jung-Hwan Lee ◽  
Guang-Zhen Jin ◽  
Jonathan C Knowles ◽  
...  

Bone/cartilage interfacial tissue engineering needs to satisfy the differential properties and architectures of the osteochondral region. Therefore, biphasic or multiphasic scaffolds that aim to mimic the gradient hierarchy are widely used. Here, we find that two differently structured (topographically) three-dimensional scaffolds, namely, “dense” and “nanofibrous” surfaces, show differential stimulation in osteo- and chondro-responses of cells. While the nanofibrous scaffolds accelerate the osteogenesis of mesenchymal stem cells, the dense scaffolds are better in preserving the phenotypes of chondrocytes. Two types of porous scaffolds, generated by a salt-leaching method combined with a phase-separation process using the poly(lactic acid) composition, had a similar level of porosity (~90%) and pore size (~150 μm). The major difference in the surface nanostructure led to substantial changes in the surface area and water hydrophilicity (nanofibrous ≫ dense); as a result, the nanofibrous scaffolds increased the cell-to-matrix adhesion of mesenchymal stem cells significantly while decreasing the cell-to-cell contracts. Importantly, the chondrocytes, when cultured on nanofibrous scaffolds, were prone to lose their phenotype, including reduced chondrogenic expressions (SOX-9, collagen type II, and Aggrecan) and glycosaminoglycan content, which was ascribed to the enhanced cell–matrix adhesion with reduced cell–cell contacts. On the contrary, the osteogenesis of mesenchymal stem cells was significantly accelerated by the improved cell-to-matrix adhesion, as evidenced in the enhanced osteogenic expressions (RUNX2, bone sialoprotein, and osteopontin) and cellular mineralization. Based on these findings, we consider that the dense scaffold is preferentially used for the chondral-part, whereas the nanofibrous structure is suitable for osteo-part, to provide an optimal biphasic matrix environment for osteochondral tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document