scholarly journals Synergistic Effects of Catalyst Mixtures on Biomass Catalytic Pyrolysis

Author(s):  
Badr A. Mohamed ◽  
Naoko Ellis ◽  
Chang Soo Kim ◽  
Xiaotao Bi

This paper studied the synergistic effects of catalyst mixtures on biomass catalytic pyrolysis in comparison with the single catalyst in a microwave reactor and a TGA. In general, positive synergistic effects were identified based on increased mass loss rate, reduced activation energy, and improved bio-oil quality compared to the case with a single catalyst at higher catalyst loads. 10KP/10Bento (a mixture of 10% K3PO4 and 10% bentonite) increased the mass loss rate by 85 and 45% at heating rates of 100 and 25°C/min, respectively, compared to switchgrass without catalyst. The activation energy for 10KP/10Bento and 10KP/10Clino (a mixture of 10% K3PO4 and 10% clinoptilolite) was slightly lower or similar to other catalysts at 30 wt.% load. The reduction in the activation energy by the catalyst mixture was higher at 100°C/min than 25°C/min due to the improved catalytic activity at higher heating rates. Synergistic effects are also reflected in the improved properties of bio-oil, as acids, aldehydes, and anhydrosugars were significantly decreased, whereas phenol and aromatic compounds were substantially increased. 30KP (30% K3PO4) and 10KP/10Bento increased the content of alkylated phenols by 341 and 207%, respectively, in comparison with switchgrass without catalyst. Finally, the use of catalyst mixtures improved the catalytic performance markedly, which shows the potential to reduce the production cost of bio-oil and biochar from microwave catalytic pyrolysis.

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1283 ◽  
Author(s):  
Xu ◽  
Chen ◽  
Zhu ◽  
Kong ◽  
Huang ◽  
...  

When a fire takes place in a tunnel, the surface of the asphalt pavement will burn and release a large amount of smoke, which is toxic to human health. Thus, in order to prevent the combustion of the asphalt pavement under fire, it is necessary to propose some methods to retard its physical and chemical reaction under the high temperature. In this study, ten different combinations of fire retardants and a control case where no fire retardant was applied were prepared for evaluation. The thermogravimetric (TG)–mass spectrometry (MS) tests were used to evaluate their effect on the fire retardance from mass and energy perspectives and the Fire Dynamics Simulator (FDS) software was used to evaluate the fire retardance from temperature and smoke distribution perspectives. In experimental analysis, the TG (thermogravimetric) and DTG (differential thermogravimetric) curves were used to analyze the mass loss rate and residual mass of the asphalt and the activation energy was calculated and analyzed as well. In addition, decay rate of mass loss rate and increasing rate of activation energy were proposed to evaluate the ease of combustion of the asphalt with and without fire retardants. The results show that in laboratory experiments, the fire retardant combination which includes 48% aluminum hydroxide, 32% magnesium hydroxide, 5% expanded graphite, and 15% encapsulated red phosphorous would lead to an improved effect of fire retardance. In numerical modeling, the temperature and smoke height distribution over time were adopted to evaluate the fire retardance effect. The temperature distribution was found to be symmetrical on both sides of the combustion point and the same combination as proposed in experimental analysis was found to have the best effect on fire retardance due to the largest decrease in temperature. Additionally, because of the highest smoke height distribution, an improved effect on smoke suppression was also found when this combination was applied.


2013 ◽  
Vol 768 (1) ◽  
pp. 47 ◽  
Author(s):  
E. O. Ofek ◽  
L. Lin ◽  
C. Kouveliotou ◽  
G. Younes ◽  
E. Göğüş ◽  
...  
Keyword(s):  

2014 ◽  
Vol 664 ◽  
pp. 199-203 ◽  
Author(s):  
Wei Guang An ◽  
Lin Jiang ◽  
Jin Hua Sun ◽  
K.M. Liew

An experimental study on downward flame spread over extruded polystyrene (XPS) foam at a high elevation is presented. The flame shape, flame height, mass loss rate and flame spread rate were measured. The influences of width and high altitude were investigated. The flame fronts are approximately horizontal. Both the intensity of flame pulsation and the average flame height increase with the rise of sample width. The flame spread rate first drops and then rises with an increase in width. The average flame height, mass loss rate and flame spread rate at the higher elevation is smaller than that at a low elevation, which demonstrates that the XPS fire risk at the higher elevation area is lower. The experimental results agree well with the theoretical analysis. This work is vital to the fire safety design of building energy conservation system.


1998 ◽  
Vol 11 (1) ◽  
pp. 367-367
Author(s):  
S.D. Van Dyk ◽  
M.J. Montes ◽  
K.W. Weiler ◽  
R.A. Sramek ◽  
N. Panagia

The radio emission from supernovae provides a direct probe of a supernova’s circumstellar environment, which presumably was established by mass-loss episodes in the late stages of the progenitor’s presupernova evolution. The observed synchrotron emission is generated by the SN shock interacting with the relatively high-density circumstellar medium which has been fully ionized and heated by the initial UV/X-ray flash. The study of radio supernovae therefore provides many clues to and constraints on stellar evolution. We will present the recent results on several cases, including SN 1980K, whose recent abrupt decline provides us with a stringent constraint on the progenitor’s initial mass; SN 1993J, for which the profile of the wind matter supports the picture of the progenitor’s evolution in an interacting binary system; and SN 1979C, where a clear change in presupernova mass-loss rate occurred about 104 years before explosion. Other examples, such as SNe 19941 and 1996cb, will also be discussed.


2018 ◽  
Vol 136 ◽  
pp. 18-26 ◽  
Author(s):  
Gianluca Greco ◽  
María Videgain ◽  
Christian Di Stasi ◽  
Belén González ◽  
Joan J. Manyà

1996 ◽  
Vol 174 ◽  
pp. 357-358
Author(s):  
I. Saviane ◽  
G. Piotto ◽  
M. Capaccioli ◽  
F. Fagotto

The bimodal nature of the horizontal branch (HB) of NGC 1851 is known since Stetson (1981). In order to better understand the properties of its HB, we collected a set of data at the ESO-NTT telescope, which provides a full coverage of the cluster area. Additional archive images from the HST-WFPC camera have been used in order to study the central region. The resulting c-m diagram (CMD) for 20500 stars is presented in Fig. 1 (left). Despite its metallicity ([Fe/H]=−1.3), NGC 1851 presents a well defined blue HB tail, besides the expected red clump. The observed CMD has been compared with the synthetic ones. The bimodal HB can be reproduced assuming that there are two stellar populations in the cluster, with an age difference of ∼ 4 Gyr, hypothesis not supported by other properties of the CMD. On the other side, if we assume that the stars in NGC 1851 are 15 Gyr old (as suggested by the difference between the HB and the TO luminosities), only a bimodal mass loss can reproduce the HB morphology: only stars with higher than standard mass loss rate are able to populate the blue-HB (BHB) tail (Fig. 1,left). There are no observational evidences for a bimodal distribution of other parameters (He, CNO, etc.).


Sign in / Sign up

Export Citation Format

Share Document