scholarly journals Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regeneration

Author(s):  
Elena Marcello ◽  
Muhammad Maqbool ◽  
Rinat Nigmatullin ◽  
Mark Cresswell ◽  
Philip R. Jackson ◽  
...  

Due to the threat posed by the rapid growth in the resistance of microbial species to antibiotics, there is an urgent need to develop novel materials for biomedical applications capable of providing antibacterial properties without the use of such drugs. Bone healing represents one of the applications with the highest risk of postoperative infections, with potential serious complications in case of bacterial contaminations. Therefore, tissue engineering approaches aiming at the regeneration of bone tissue should be based on the use of materials possessing antibacterial properties alongside with biological and functional characteristics. In this study, we investigated the combination of polyhydroxyalkanoates (PHAs) with a novel antimicrobial hydroxyapatite (HA) containing selenium and strontium. Strontium was chosen for its well-known osteoinductive properties, while selenium is an emerging element investigated for its multi-functional activity as an antimicrobial and anticancer agent. Successful incorporation of such ions in the HA structure was obtained. Antibacterial activity against Staphylococcus aureus 6538P and Escherichia coli 8739 was confirmed for co-substituted HA in the powder form. Polymer-matrix composites based on two types of PHAs, P(3HB) and P(3HO-co-3HD-co-3HDD), were prepared by the incorporation of the developed antibacterial HA. An in-depth characterization of the composite materials was conducted to evaluate the effect of the filler on the physicochemical, thermal, and mechanical properties of the films. In vitro antibacterial testing showed that the composite samples induce a high reduction of the number of S. aureus 6538P and E. coli 8739 bacterial cells cultured on the surface of the materials. The films are also capable of releasing active ions which inhibited the growth of both Gram-positive and Gram-negative bacteria.

Author(s):  
John G. Michopoulos ◽  
John G. Hermanson ◽  
Athanasios Iliopoulos ◽  
Samuel Lambrakos ◽  
Tomonari Furukawa

In the present paper we focus on demonstrating the use of design optimization for the constitutive characterization of anisotropic material systems such as polymer matrix composites, with or without damage. All approaches are based on the availability of experimental data originating from mechatronic material testing systems that can expose specimens to multidimensional loading paths and can automate the acquisition of data representing the excitation and response behavior of the specimens involved. Material characterization is achieved by minimizing the difference between experimentally measured and analytically computed system responses as described by strain fields and surface strain energy densities. A one dimensional model is presented first to elucidate the design optimization for the general non-linear constitutive response. Small and large strain formulations based on strain energy density decompositions are developed and utilized for determining the constitutive behavior of composite materials. Examples based on both synthetic and actual data demonstrate the successful application of design optimization for constitutive characterization.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2003 ◽  
Vol 124 (4) ◽  
pp. A558
Author(s):  
Suzana D. Savkovic ◽  
Farol L. Tomson ◽  
Michelle Muza ◽  
Gail Hecht
Keyword(s):  

2007 ◽  
Vol 189 (24) ◽  
pp. 8871-8879 ◽  
Author(s):  
Zhibiao Fu ◽  
Niles P. Donegan ◽  
Guido Memmi ◽  
Ambrose L. Cheung

ABSTRACT The mazEF homologs of Staphylococcus aureus, designated mazEFsa , have been shown to cotranscribe with the sigB operon under stress conditions. In this study, we showed that MazEF Sa , as with their Escherichia coli counterparts, compose a toxin-antitoxin module wherein MazF Sa leads to rapid cell growth arrest and loss in viable CFU upon overexpression. MazF Sa is a novel sequence-specific endoribonuclease which cleaves mRNA to inhibit protein synthesis. Using ctpA mRNA as the model substrate both in vitro and in vivo, we demonstrated that MazF Sa cleaves single-strand RNA preferentially at the 5′ side of the first U or 3′ side of the second U residue within the consensus sequences VUUV′ (where V and V′ are A, C, or G and may or may not be identical). Binding studies confirmed that the antitoxin MazE Sa binds MazF Sa to form a complex to inhibit the endoribonuclease activity of MazF Sa . Contrary to the system in E. coli, exposure to selected antibiotics augmented mazEFsa transcription, akin to what one would anticipate from the environmental stress response of the sigB system. These data indicate that the mazEF system of S. aureus differs from the gram-negative counterparts with respect to mRNA cleavage specificity and antibiotic stresses.


2010 ◽  
Vol 24-25 ◽  
pp. 419-423 ◽  
Author(s):  
A. Andriyana ◽  
Luisa Silva ◽  
Noelle Billon

The present work can be regarded as a first step toward an integrated modelling of mould filling during injection moulding process of polymer matrix composites and the resulting material behaviour under service loading conditions. More precisely, the emphasis of the present research is laid on the development of a mechanical model which takes into account the processing-induced microstructure and is capable to predict the mechanical response of the material. In the Part I, a set of experiments which captures the mechanical behaviour of an injection moulded short fibre reinforced under different strain histories is described. Three mechanical testing are conducted: Dynamic Mechanical Analysis (DMA), uniaxial tension and simple shear. Tests show that the material exhibits complex responses mainly due to non-linearity, anisotropy, time/rate-dependence, hysteresis and permanent strain. Moreover, the relaxed state of the material is characterized by the existence of a so-called anisotropic equilibrium hysteresis independently of the prescribed strain rate.


Sign in / Sign up

Export Citation Format

Share Document