scholarly journals Effects of Mechanical Compression on Chondrogenesis of Human Synovium-Derived Mesenchymal Stem Cells in Agarose Hydrogel

Author(s):  
Yuxiang Ge ◽  
Yixuan Li ◽  
Zixu Wang ◽  
Lan Li ◽  
Huajian Teng ◽  
...  

Mechanical compression is a double-edged sword for cartilage remodeling, and the effect of mechanical compression on chondrogenic differentiation still remains elusive to date. Herein, we investigate the effect of mechanical dynamic compression on the chondrogenic differentiation of human synovium-derived mesenchymal stem cells (SMSCs). To this aim, SMSCs encapsulated in agarose hydrogels were cultured in chondrogenic-induced medium with or without dynamic compression. Dynamic compression was applied at either early time-point (day 1) or late time-point (day 21) during chondrogenic induction period. We found that dynamic compression initiated at early time-point downregulated the expression level of chondrocyte-specific markers as well as hypertrophy-specific markers compared with unloaded control. On the contrary, dynamic compression applied at late time-point not only enhanced the levels of cartilage matrix gene expression, but also suppressed the hypertrophic development of SMSCs compared with unloaded controls. Taken together, our findings suggest that dynamic mechanical compression loading not only promotes chondrogenic differentiation of SMSCs, but also plays a vital role in the maintenance of cartilage phenotype, and our findings also provide an experimental guide for stem cell-based cartilage repair and regeneration.

Author(s):  
J. Ferdinandus ◽  
L. Kessler ◽  
N. Hirmas ◽  
M. Trajkovic-Arsic ◽  
R. Hamacher ◽  
...  

Abstract Introduction Positron emission tomography (PET) using small ligands of the fibroblast activation protein (FAP) was recently introduced. However, optimal uptake time has not been defined yet. Here, we systematically compare early (~ 10 min p.i.) and late (~ 60 min p.i.) FAPI-46 imaging in patients with various types of cancer. Methods This is a retrospective single-institutional study. Imaging was performed at the Essen University Hospital, Germany. A total of 69 patients who underwent dual time-point imaging for either restaging (n = 52, 75%) or staging (n = 17, 25%) of cancer were included. Patients underwent PET with two acquisitions: early (mean 11 min, SD 4) and late (mean 66 min, SD 9). Mean injected activity was 148 MBq (SD 33). Results In total, 400 lesions were detected in 69 patients. Two of 400 (0.5%) lesions were only seen in early time-point imaging but not in late time-point imaging. On a per-patient level, there was no significant difference between SUVmax of hottest tumor lesions (Wilcoxon: P = 0.73). Organ uptake demonstrated significant early to late decrease in SUVmean (average ∆SUVmean: − 0.48, − 0.14, − 0.27 for gluteus, liver, and mediastinum, respectively; Wilcoxon: P < 0.001). On a per-lesion basis, a slight increase of SUVmax was observed (average ∆SUVmax: + 0.4, Wilcoxon: P = 0.03). Conclusion In conclusion, early (~ 10 min p.i.) versus late (~ 60 min p.i.) FAPI-46 imaging resulted in equivalent lesion uptake and tumor detection. For improved feasibility and scan volume, we implement early FAPI-46 PET in future clinical and research protocols.


2010 ◽  
Vol 38 (9) ◽  
pp. 2896-2909 ◽  
Author(s):  
Stephen D. Thorpe ◽  
Conor T. Buckley ◽  
Tatiana Vinardell ◽  
Fergal J. O’Brien ◽  
Veronica A. Campbell ◽  
...  

Neurosurgery ◽  
2020 ◽  
Vol 87 (5) ◽  
pp. 1064-1069 ◽  
Author(s):  
Alin Borha ◽  
Audrey Chagnot ◽  
Romain Goulay ◽  
Evelyne Emery ◽  
Denis Vivien ◽  
...  

Abstract Background Solutes distribution by the intracranial cerebrospinal fluid (CSF) fluxes along perivascular spaces and through interstitial fluid (ISF) play a key role in the clearance of brain metabolites, with essential functions in maintaining brain homeostasis. Objective To investigate the impact of decompressive craniectomy (DC) and cranioplasty (CP) on the efficacy of solutes distribution by the intracranial CSF and ISF flux. Methods Mice were allocated in 3 groups: sham surgery, DC, and DC followed by CP. The solutes distribution in the brain parenchyma was assessed using T1 magnetic resonance imaging after injection of DOTA-Gadolinium in the cisterna magna. This evaluation was performed at an early time point following DC (after 2 d) and at a later time point (after 15 d). We evaluated the solutes distribution in the whole brain and in the region underneath the DC area. Results Our results demonstrate that the global solutes distribution in the brain parenchyma is impaired after DC in mice, both at early and late time-points. However, there was no impact of DC on the solutes distribution just under the craniectomy. We then provide evidence that this impairment was reversed by CP. Conclusion The solute distribution in the brain parenchyma by the CSF and ISF is impaired by DC, a phenomenon reversed by CP.


Author(s):  
Stephen D. Thorpe ◽  
Conor T. Buckley ◽  
Andrew J. Steward ◽  
Daniel J. Kelly

Unconfined cyclic compressive loading has been shown to promote the chondrogenic differentiation of agarose encapsulated mesenchymal stem cells (MSCs) in the absence of chondrogenic growth factors [1, 2]. However, in general robust chondrogenesis has not been reported as a result of mechanical stimulation alone; with biochemical stimulation through TGF-β supplementation yielding a more potent pro-chondrogenic effect [2, 3].


2021 ◽  
Vol 22 (13) ◽  
pp. 7058
Author(s):  
Thorsten Kirsch ◽  
Fenglin Zhang ◽  
Olivia Braender-Carr ◽  
Mary K. Cowman

Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1β)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.


2020 ◽  
Vol 134 ◽  
pp. 107536 ◽  
Author(s):  
Juan Jairo Vaca-González ◽  
Sandra Clara-Trujillo ◽  
María Guillot-Ferriols ◽  
Joaquín Ródenas-Rochina ◽  
María J. Sanchis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document