scholarly journals Engineering of the Recombinant Expression and PEGylation Efficiency of the Therapeutic Enzyme Human Thymidine Phosphorylase

Author(s):  
Christos S. Karamitros ◽  
Catrina M. Somody ◽  
Giulia Agnello ◽  
Scott Rowlinson

Human thymidine phosphorylase (HsTP) is an enzyme with important implications in the field of rare metabolic diseases. Defective mutations of HsTP lead to mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a disease with a high unmet medical need that is associated with severe neurological and gastrointestinal complications. Current efforts focus on the development of an enzyme replacement therapy (ERT) using the Escherichia coli ortholog (EcTP). However, bacterial enzymes are counter-indicated for human therapeutic applications because they are recognized as foreign by the human immune system, thereby eliciting adverse immune responses and raising significant safety and efficacy risks. Thus, it is critical to utilize the HsTP enzyme as starting scaffold for pre-clinical drug development, thus de-risking the safety concerns associated with the use of bacterial enzymes. However, HsTP expresses very poorly in E. coli, whereas its PEGylation, a crucial chemical modification for achieving long serum persistence of therapeutic enzymes, is highly inefficient and negatively affects its catalytic activity. Here we focused on the engineering of the recombinant expression profile of HsTP in E. coli cells, as well as on the optimization of its PEGylation efficiency aiming at the development of an alternative therapeutic approach for MNGIE. We show that phylogenetic and structural analysis of proteins can provide important insights for the rational design of N’-terminus-truncation constructs which exhibit significantly improved recombinant expression levels. In addition, we developed and implemented a criteria-driven rational surface engineering strategy for the substitution of arginine-to-lysine and lysine-to-arginine residues to achieve more efficient, homogeneous and reproducible PEGylation without negatively affecting the enzymatic catalytic activity upon PEGylation. Collectively, our proposed strategies provide an effective way to optimize enzyme PEGylation and E. coli recombinant expression and are likely applicable for other proteins and enzymes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Wang ◽  
Yan Gao ◽  
Yanting Tang ◽  
Xiaoting Zhou ◽  
Yuezheng Lai ◽  
...  

AbstractCytochromes bd are ubiquitous amongst prokaryotes including many human-pathogenic bacteria. Such complexes are targets for the development of antimicrobial drugs. However, an understanding of the relationship between the structure and functional mechanisms of these oxidases is incomplete. Here, we have determined the 2.8 Å structure of Mycobacterium smegmatis cytochrome bd by single-particle cryo-electron microscopy. This bd oxidase consists of two subunits CydA and CydB, that adopt a pseudo two-fold symmetrical arrangement. The structural topology of its Q-loop domain, whose function is to bind the substrate, quinol, is significantly different compared to the C-terminal region reported for cytochromes bd from Geobacillus thermodenitrificans (G. th) and Escherichia coli (E. coli). In addition, we have identified two potential oxygen access channels in the structure and shown that similar tunnels also exist in G. th and E. coli cytochromes bd. This study provides insights to develop a framework for the rational design of antituberculosis compounds that block the oxygen access channels of this oxidase.


Author(s):  
Hans C. Hendrikse ◽  
Alejo Aguirre ◽  
Arno van der Weijden ◽  
Anne S. Meeussen ◽  
Fernanda Neira D’Angelo ◽  
...  

2019 ◽  
Vol 126 ◽  
pp. 229-237 ◽  
Author(s):  
Naeem Mahmood Ashraf ◽  
Akshaya Krishnagopal ◽  
Aadil Hussain ◽  
David Kastner ◽  
Ahmed Mahmoud Mohammed Sayed ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3512 ◽  
Author(s):  
Adam Bajinting ◽  
Ho Leung Ng

Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases containing three domains: an extracellular receptor domain, a single transmembrane helix, and an intracellular tyrosine kinase domain. FGFRs are activated by fibroblast growth factors (FGFs) as part of complex signal transduction cascades regulating angiogenesis, skeletal formation, cell differentiation, proliferation, cell survival, and cancer. We have developed the first recombinant expression system in E. coli to produce a construct of human FGFR2 containing its transmembrane and extracellular receptor domains. We demonstrate that the expressed construct is functional in binding heparin and dimerizing. Size exclusion chromatography demonstrates that the purified FGFR2 does not form a complex with FGF1 or adopts an inactive dimer conformation. Progress towards the successful recombinant production of intact FGFRs will facilitate further biochemical experiments and structure determination that will provide insight into how extracellular FGF binding activates intracellular kinase activity.


2021 ◽  
Author(s):  
Victor Y. Zhao ◽  
João V. Rodrigues ◽  
Elena R. Lozovsky ◽  
Daniel L. Hartl ◽  
Eugene I. Shakhnovich

To what degree are individual structural elements within proteins modular such that similar structures from unrelated proteins can be interchanged? We study sub-domain modularity by creating 20 chimeras of an enzyme, E. coli dihydrofolate reductase (DHFR), in which a catalytically important, 10-residue α-helical sequence is replaced by α-helical sequences from a diverse set of proteins. The chimeras stably fold but have a range of diminished thermal stabilities and catalytic activities. Evolutionary coupling analysis indicates that the residues of this α-helix are under selection pressure to maintain catalytic activity in DHFR. We performed molecular dynamics simulations using replica exchange with solute-tempering. Chimeras with low catalytic activity exhibit non-helical conformations that block the binding site and disrupt the positioning of the catalytically essential residue D27. Simulation observables and in vitro measurements of thermal stability and substrate binding affinity are strongly correlated. Several E. coli strains with chromosomally integrated chimeric DHFRs can grow, with growth rates that follow predictions from a kinetic flux model that depends on the intracellular abundance and catalytic activity of DHFR. Our findings show that although α-helices are not universally substitutable, the molecular and fitness effects of modular segments can be predicted by the biophysical compatibility of the replacement segment.


2012 ◽  
Vol 47 (12) ◽  
pp. 2097-2102 ◽  
Author(s):  
Angela Mosquera ◽  
Alexander Rodríguez ◽  
Carlos Soto ◽  
Felice Leonardi ◽  
Angela Espejo ◽  
...  

2018 ◽  
Vol 1 (3) ◽  
pp. 1150-1163 ◽  
Author(s):  
Wei Cai ◽  
Qin Zhong ◽  
Dongyu Wang ◽  
Yunxia Zhao ◽  
Mindong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document