scholarly journals Fault Detection in Modular Offshore Platform Connections Using Extended Kalman Filter

2021 ◽  
Vol 7 ◽  
Author(s):  
Andreas Tockner ◽  
Bernhard Blümel ◽  
Katrin Ellermann

Within the Space@Sea project, funded by the Horizon 2020 program, a concept for a floating island was developed. The main idea is to create space in the offshore environment, which can be used to harvest renewable energy, grow food or build a maritime transport and logistic hub. The island is designed as an assembly of platforms, which are connected by ropes and fenders. These connection elements are considered critical, as they have to carry extreme loads in the severe offshore environment. At the same time, any failure in the connecting elements might put the entire platform structure at risk. This paper presents a feasibility study for the fault detection in the connection elements using Extended Kalman filters. For various test cases, typical parameters of the connecting elements are estimated from motion data of the structure. Thus, the technique reveals changes in the connections. For various test cases, it is shown that fault detection is possible. Not only a failure of a single connecting rope but also multiple faults in the system can be detected.

TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 33-41
Author(s):  
YVON THARRAULT ◽  
MOULOUD AMAZOUZ

Recovery boilers play a key role in chemical pulp mills. Early detection of defects, such as water leaks, in a recovery boiler is critical to the prevention of explosions, which can occur when water reaches the molten smelt bed of the boiler. Early detection is difficult to achieve because of the complexity and the multitude of recovery boiler operating parameters. Multiple faults can occur in multiple components of the boiler simultaneously, and an efficient and robust fault isolation method is needed. In this paper, we present a new fault detection and isolation scheme for multiple faults. The proposed approach is based on principal component analysis (PCA), a popular fault detection technique. For fault detection, the Mahalanobis distance with an exponentially weighted moving average filter to reduce the false alarm rate is used. This filter is used to adapt the sensitivity of the fault detection scheme versus false alarm rate. For fault isolation, the reconstruction-based contribution is used. To avoid a combinatorial excess of faulty scenarios related to multiple faults, an iterative approach is used. This new method was validated using real data from a pulp and paper mill in Canada. The results demonstrate that the proposed method can effectively detect sensor faults and water leakage.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2922
Author(s):  
Fan Zhang ◽  
Ye Wang ◽  
Yanbin Gao

Fault detection and identification are vital for guaranteeing the precision and reliability of tightly coupled inertial navigation system (INS)/global navigation satellite system (GNSS)-integrated navigation systems. A variance shift outlier model (VSOM) was employed to detect faults in the raw pseudo-range data in this paper. The measurements were partially excluded or included in the estimation process depending on the size of the associated shift in the variance. As an objective measure, likelihood ratio and score test statistics were used to determine whether the measurements inflated variance and were deemed to be faulty. The VSOM is appealing because the down-weighting of faulty measurements with the proper weighting factors in the analysis automatically becomes part of the estimation procedure instead of deletion. A parametric bootstrap procedure for significance assessment and multiple testing to identify faults in the VSOM is proposed. The results show that VSOM was validated through field tests, and it works well when single or multiple faults exist in GNSS measurements.


2016 ◽  
Vol 23 (19) ◽  
pp. 3175-3195 ◽  
Author(s):  
Ayan Sadhu ◽  
Guru Prakash ◽  
Sriram Narasimhan

A robust hybrid hidden Markov model-based fault detection method is proposed to perform multi-state fault classification of rotating components. The approach presented in this paper enhances the performance of the standard hidden Markov model (HMM) for fault detection by performing a series of pre-processing steps. First, the de-noised time-scale signatures are extracted using wavelet packet decomposition of the vibration data. Subsequently, the Teager Kaiser energy operator is employed to demodulate the time-scale components of the raw vibration signatures, following which the condition indicators are calculated. Out of several possible condition indicators, only relevant features are selected using a decision tree. This pre-processing improves the sensitivity of condition indicators under multiple faults. A Gaussian mixing model-based hidden Markov model (HMM) is then employed for fault detection. The proposed hybrid HMM is an improvement over traditional HMM in that it achieves better separation of the feature space leading to more robust state estimation under multiple fault states and measurement noise scenarios. A simulation employing modulated signals and two experimental validation studies are presented to demonstrate the performance of the proposed method.


Author(s):  
Heshan Fernando ◽  
Vedang Chauhan ◽  
Brian Surgenor

This paper presents the results of a comparative study that investigated the use of image-based and signal-based sensors for fault detection and fault isolation of visually-cued faults on an automated assembly machine. The machine assembles 8 mm circular parts, from a bulk-supply, onto continuously moving carriers at a rate of over 100 assemblies per minute. Common faults on the machine include part jams and ejected parts that occur at different locations on the machine. Two sensor systems are installed on the machine for detecting and isolating these faults: an image-based system consisting of a single camera and a signal-based sensor system consisting of multiple greyscale sensors and limit switches. The requirements and performance of both systems are compared for detecting six faults on the assembly machine. It is found that both methods are able to effectively detect the faults but they differ greatly in terms of cost, ease of implementation, detection time and fault isolation capability. The conventional signal-based sensors are low in cost, simple to implement and require little computing power, but the installation is intrusive to the machine and readings from multiple sensors are required for faster fault detection and isolation. The more sophisticated image-based system requires an expensive, high-resolution, high-speed camera and significantly more processing power to detect the same faults; however, the system is not intrusive to the machine, fault isolation becomes a simpler problem with video data, and the single camera is able to detect multiple faults in its field of view.


Regression testing is one of the most critical testing activities among software product verification activities. Nevertheless, resources and time constraints could inhibit the execution of a full regression test suite, hence leaving us in confusion on what test cases to run to preserve the high quality of software products. Different techniques can be applied to prioritize test cases in resource-constrained environments, such as manual selection, automated selection, or hybrid approaches. Different Multi-Objective Evolutionary Algorithms (MOEAs) have been used in this domain to find an optimal solution to minimize the cost of executing a regression test suite while obtaining maximum fault detection coverage as if the entire test suite was executed. MOEAs achieve this by selecting set of test cases and determining the order of their execution. In this paper, three Multi Objective Evolutionary Algorithms, namely, NSGA-II, IBEA and MoCell are used to solve test case prioritization problems using the fault detection rate and branch coverage of each test case. The paper intends to find out what’s the most effective algorithm to be used in test cases prioritization problems, and which algorithm is the most efficient one, and finally we examined if changing the fitness function would impose a change in results. Our experiment revealed that NSGA-II is the most effective and efficient MOEA; moreover, we found that changing the fitness function caused a significant reduction in evolution time, although it did not affect the coverage metric.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Wei Huang ◽  
Xiaoxin Su

This paper deals with the design of a fault detection and isolation (FDI) system for an intelligent vehicle, a vehicle equipped with advanced driver assistance system (ADAS). The ADASs are outfitted with sensors for acquiring various information about the vehicle and its surroundings. Since these sensors are sensitive to faults, an efficient FDI system should be developed. The designed FDI system is comprised of three parts: a detection part, a decision part, and a fault management part. The detection part applies a generalized observer scheme (GOS). In the GOS, there is bank of extended Kalman filters (EKFs), each excited by all except one sensor measurement. The residual generated from the measurement update of each EKF is therefore sensitive to all sensor faults but one. This way, the fault sensitivity pattern of the residual makes it possible to detect a fault and locate the faulty sensor. The designed FDI system has been implemented and tested off-line with actual experiment data. Good results have been obtained with diagnosing individual sensor faults and outputting fault-free vehicle states.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 17671-17677 ◽  
Author(s):  
Ye Yuan ◽  
Xiafoeng Liu ◽  
Shuiting Ding ◽  
Bochao Pan

Sign in / Sign up

Export Citation Format

Share Document