scholarly journals Classification and Milling Increase Fly Ash Pozzolanic Reactivity

2021 ◽  
Vol 7 ◽  
Author(s):  
Ruben Snellings ◽  
Hadi Kazemi-Kamyab ◽  
Peter Nielsen ◽  
Liesbet Van den Abeele

Upcycling and reclaiming of low quality or stored coal combustion fly ashes could enable to tap into a voluminous resource of supplementary cementitious materials (SCMs) for low-carbon blended cements. Low reactivity fly ashes are usually either too crystalline or too coarse. Beneficiation treatments for coarse fly ashes comprise size classification or milling processes to extract or produce fine size fractions of higher pozzolanic reactivity. This article compares the effect of size classification and milling treatments on the reactivity of a siliceous fly ash (FA). The intrinsic chemical reactivity is assessed using the R3 heat release test method. The results showed significant increases of 57 and 40% for fine classified and milled fly ash compared to the initial fly ash, respectively. In addition heat release and portlandite consumption were measured for blended cements with 30 wt.% Portland cement replacement by the fly ashes. Both test results are combined to calculate the degree of reaction of the fly ashes over time in blended cement. The results demonstrate a strong effect of particle size on fly ash reactivity and degree of reaction. It is shown that increasing the inherent reactivity of fly ashes is an effective way of both accelerating compressive strength gain and enhancing late age strength with fine classified fly ashes reaching equivalent strength as neat Portland cement by 28 days and attaining a strength activity index of 137% by 90 days.

Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 12
Author(s):  
Jonathan Page ◽  
Laurent Libessart ◽  
Chafika Djelal ◽  
Maurice Gonon ◽  
Issam Laiymani

In recent years, numerous studies focused on the development of sustainable cement-based binders through the use of supplementary cementitious materials such slag, fly ash, metakaolin, silica fume, pozzolan, etc. The use of wood biomass for power generation is increasingly common which lead to an important amount of waste produced in the combustion process such as fly ash, which must be transported to landfills for deposition, or used as sludge in farming. Depending on their chemical and physical characteristics, wood biomass fly ashes could be reuse in blended cements as supplementary cementitious material. Different sources of biomass fly ashes have been selected to evaluate their potential for use as a cement replacement. Their chemical and mineralogical compositions, as well as their morphology were first evaluated via X-ray and laser diffraction (XRD), inductively coupled plasma (ICP) and scanning electron microscopy (SEM coupled with energy-dispersive X-ray spectroscopy (EDX). Fly ashes showed variable physicochemical characteristics but some present interesting compositions for the intended use. One fly ash present a high content of CaO and minors of SiO2 and Al2O3. The chemical composition does not allow to categorize this fly ash as a pozzolan material but it may have a latent hydraulic behaviour, which could be interesting as cement substitution. This fly ash has been incorporated into a cement paste by progressive replacement of Portland cement (from 0 to 70%). It has been observed that biomass fly ash has a higher water demand compared to Portland cement. This additional water demand was evaluated by the Vicat consistency test and by an evaporometry method. The setting time and kinetic hydration of the biomass fly ash pastes were also assessed with the standardized Vicat test and by isothermal calorimetry.


1987 ◽  
Vol 113 ◽  
Author(s):  
V. H. Dodson

ABSTRACTIn practice, the amount of fly ash added to portland cement concrete varies depending upon the desired end properties of the concrete. Generally, when a given portland cement concrete is redesigned to include fly ash, between 10 and 50% of the cement is replaced by a volume of fly ash equal to that of the cement. Sometimes as much as twice the volume of the cement replaced, although 45.4 kg (100 lbs) of cement will only produce enough calcium hydroxide during its reaction with water to react with about 9 kg (20 lbs) of a typical fly ash. The combination of large amounts of certain fly ashes with small amounts of portland cement in concrete has been found to produce surprisingly high compressive strengths, which cannot be accounted for by the conventional “pozzolanic reaction”. Ratios of cement to fly ash as high as 1:15 by weight can produce compressive strengths of 20.7 MPa (3,000 psi) at I day and over 41.4 MPa (6,000 psi) at 28 days. Methods of identifying these “hyperactive” fly ashes along with some of the startling results, with and without chemical admixtures are described.


2022 ◽  
Vol 1048 ◽  
pp. 376-386
Author(s):  
M.S. Riyana ◽  
Dhanya Sathyan ◽  
M.K. Haridharan

SCC (Self compacting concrete) can fill formwork and encloses reinforcing bars under gravity and maintains homogeneity without vibration. SCC shortens the period of construction, guarantees compaction in confined zones, moreover terminates noise due to vibration. The wide spread application of SCC is restricted because of the high cost for the production of SCC with high cement content and chemical admixtures. In order to make the production of SCC economical, and to reduce the high cement content the Ordinary Portland Cement in SCC can be blended with pozzolanic materials like rice husk ash and supplementary cementitious materials like fly ash. In this paper the fresh state properties and mechanical properties such as compressive strength, split tensile strength and flexural strength of SCC with ternary blends of rice husk ash (RHA) and fly ash (FA) were studied. For this purpose, different mixes were prepared by replacing Ordinary Portland Cement (OPC) with 5%, 10%, 15% and 20% of rice husk ash (RHA) and the percentage of addition of fly ash (FA) is fixed as 15% for all these mixes. It was observed that the specimen incorporating 10% of rice husk ash (RHA) and 15% of fly ash (FA) as ternary blend exhibits better mechanical properties such as: Compressive, split tensile and flexural strengths at 28 days of age as compared to traditional mix of SCC without RHA (Rice Husk Ash) and FA (Fly Ash). This research demonstrates that the ideal percentage for a mixture of rice husk ash (RHA) and fly ash as ternary blend is 10% and 15% respectively.


2017 ◽  
Vol 50 (2) ◽  
pp. 498-507 ◽  
Author(s):  
Yuri P. Stetsko ◽  
Natallia Shanahan ◽  
Harvey Deford ◽  
A. Zayed

An iterative Rietveld–PONKCS (partial or no known crystal structure) technique has been developed for precise and accurate determination of the weight percentages of predominantly amorphous supplementary cementitious materials (SCMs) contained in Portland cement–SCM blends. This technique involves the iterative refinement of the SCM amorphous phase (SCMAP) content, with the separation of the refinement of the SCMAP shape parameters from background refinement. The technique also includes an internal and external standard refinement of both the calibration SCM and the cement–SCM blend. This approach enables the separation of the contributions of the SCMs and the cement to the amorphous content of the cement–SCM blend. The technique has been successfully applied to binary systems of cement–slag and cement–fly ash, and ternary blends of cement–fly ash–slag, over a wide range of cement replacement levels. In the ternary systems, the proposed technique was successfully able to separate the individual amorphous contributions of slag and fly ash to the total amorphous content of the system. The approach was also implemented on a pair of commercially available binary blended cements containing 30% slag and 30% fly ash, respectively.


1984 ◽  
Vol 43 ◽  
Author(s):  
Michael W. Grutzeck ◽  
Wei Fajun ◽  
Della M. Roy

AbstractThe hydration of high-calcium and low-calcium fly ash-cementmixtures was investigated to determine the effect of fly ash upon the hydration of a Type I portland cement, and to determine the associated mechanisms of hydration. When blended with portland cement, both fly ashes retarded the early hydration process, the high-Ca more so than the low-Ca. Analyses of solution compositions and calorimetric (heat of hydration) measurements were made. The retardation and hydration effects are discussed in terms of solution composition data and solid phase characterization. The hydration effects were interpreted and compared with the results of previous work.


1988 ◽  
Vol 136 ◽  
Author(s):  
Erik Stoltenberg-Hansson

ABSTRACTTests have been performed with Class F fly ashes used for the production of interground 20% fly ash cement. Unground and ground fly ashes were mixed with a reference high fineness Portland cement and tested for strength in mortar (ISO/CEN method). The fly ashes were also tested for chemical composition, bulk density and specific gravity, fineness (Blaine) and particle size distribution (laser method). There are considerable variations in the specific weights of the asdelivered fly ashes. It is shown that even a small amount of grinding increases the specific gravity significantly, and improves and homogenizes the particle size distributions, resulting in higher strength. The strength increase corresponds to the decrease in air void content.Intergrinding of fly ash and clinker in large scale mills reduces the power consumption, giving the same 28-day strength as mixed fly ash cement with higher fineness.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Cheng Ju ◽  
Yushi Liu ◽  
Zhenyun Yu ◽  
Yingzi Yang

In this study, a novel cement-lime-fly ash bound macadam (CLFBM) as pavement base material was designed by incorporating Portland cement, dihydrate gypsum (CaSO4·2H2O), and ground granulated blast furnace slag (GGBS) into the lime-fly ash bound macadam (LFBM) for the purpose of the early opening to traffic. The multifactors orthogonal test method was used to evaluate the effects of Portland cement, dihydrate gypsum, and GGBS on the early-age strength of CLFBM. Moreover, the compressive and flexural strengths at 28 days as well as the drying shrinkage development in 56 days were investigated. By conducting the comprehensive analysis for the better mechanical properties and the lowest drying shrinkage, Portland cement : dihydrate gypsum : lime : fly ash : GGBS : gravels = 2 : 1 : 6 : 5.6 : 8.4 : 80 is determined as the optimal mix proportion of CLFBM. In addition, scanning electron microscope (SEM) results confirmed the formation of a large number of ettringite and C-S-H gels, providing a powerful support for the enhanced early-age strength and suppressed drying shrinkage of CLFBM.


2019 ◽  
Vol 1 (1) ◽  
pp. 43-44

Several supplementary cementitious materials (SCM) were blended with Portland cement clinker in order to produce more sustainable binders. The use of such materials, where no additional clinkering process is involved, leads to a significant reduction in CO2 emissions per ton of cementitious materials (grinding, mixing and transport of concrete and use very little energy compared to the clinkering process) and is a means to (re)utilize by-products of industrial manufacturing processes. Fly ash, for example, is the most commonly used supplementary cementitious material. The blending of Portland cement with fly ash results in the reduction of the total amount of portlandite in the hydrated mixture [1-4], somewhat less pronounced than for silica fume as: the reactivity of fly ash is very limited and as the CaO in the fly ash is an additional source of calcium [5]. Since fly ash particles are more spherical in shape than cement particles, workability and pumpability can be improved, by adding fly ash, also, fly ashes can cause low early strengthening. In this paper, the effects of Fly-ash as SCM’s on microstructure and hydration kinetics are studied.


2018 ◽  
Vol 59 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Tobias Danner ◽  
Harald Justnes

Abstract Calcined clays are gaining increasing interest as future supplementary cementitious materials for the production of blended cements. Besides the mineralogy, the right production conditions can affect the pozzolanic activity of calcined clays. In this paper, the pozzolanic reactivity of two calcined natural clays in dependence of burning temperature, residence time in the furnace, cooling conditions and particle size of the final product is investigated. The highest pozzolanic reactivity was found at calcination temperatures between 600 and 800°C. While different cooling conditions had no identified effect on reactivity, decreased particle size and residence time increased the reactivity.


2021 ◽  
Vol 26 (5) ◽  
pp. 945-953
Author(s):  
Paki Turgut ◽  
Mehmet Can Alas ◽  
Muhammed Arif Gurel

ABSTRACT Huge amounts of fly ash - a substance that does not conform to the ASTM C618 classification due to its chemical properties - have been abandoned in landfills around the world, despite their self-cementing property. It has not been used in concrete making applications due to its large amounts of free lime and sulfate contents. The fly ash in these plants is dumped in landfills, causing serious environmental hazards. Fly ash is disposed to the landfills by belt conveyors after being humidified with water. Therefore, the fly ashes humidified in the landfill areas are hydrated in nature. This hydration is further intensified in landfills by rain and snow. Thus, the free lime content of fly ash decreases due to its long hydration process. In this work, the lightweight masonry blocks were produced by mixing normal and hydrated fly ashes or normal, hydrated fly ash and lime without Portland cement. The compressive strength, water absorption, sorptivity, density, porosity, and thermal conductivity values of the samples produced were determined. The results obtained from these tests showed that lightweight masonry blocks could be produced by using these waste materials in building applications.


Sign in / Sign up

Export Citation Format

Share Document