Effective Utilization of Industrial and Agricultural Waste for Developing Sustainable Self-Compacting Concrete

2022 ◽  
Vol 1048 ◽  
pp. 376-386
Author(s):  
M.S. Riyana ◽  
Dhanya Sathyan ◽  
M.K. Haridharan

SCC (Self compacting concrete) can fill formwork and encloses reinforcing bars under gravity and maintains homogeneity without vibration. SCC shortens the period of construction, guarantees compaction in confined zones, moreover terminates noise due to vibration. The wide spread application of SCC is restricted because of the high cost for the production of SCC with high cement content and chemical admixtures. In order to make the production of SCC economical, and to reduce the high cement content the Ordinary Portland Cement in SCC can be blended with pozzolanic materials like rice husk ash and supplementary cementitious materials like fly ash. In this paper the fresh state properties and mechanical properties such as compressive strength, split tensile strength and flexural strength of SCC with ternary blends of rice husk ash (RHA) and fly ash (FA) were studied. For this purpose, different mixes were prepared by replacing Ordinary Portland Cement (OPC) with 5%, 10%, 15% and 20% of rice husk ash (RHA) and the percentage of addition of fly ash (FA) is fixed as 15% for all these mixes. It was observed that the specimen incorporating 10% of rice husk ash (RHA) and 15% of fly ash (FA) as ternary blend exhibits better mechanical properties such as: Compressive, split tensile and flexural strengths at 28 days of age as compared to traditional mix of SCC without RHA (Rice Husk Ash) and FA (Fly Ash). This research demonstrates that the ideal percentage for a mixture of rice husk ash (RHA) and fly ash as ternary blend is 10% and 15% respectively.

2019 ◽  
Vol 8 (3) ◽  
pp. 6412-6415 ◽  

Self-compacting concrete (SCC) is relatively a recent development in the construction world. SCC can flow through dense reinforcement under its own weight without any segregation, bleeding, and vibration. The use of steel fibers is being encouraged to increase mechanical characteristics of SSC. However, adding fibers to fresh concrete results in loss of workability. Steel fibers operate as crack arrestors in concrete and extend the span of structures. In the present study, the mechanical properties of SCC with cement is partially replaced by rice husk ash (RHA) & P500 (ultra-fine fly ash). A total of 5 mixes with 0.3 W/C ratio were cast for 7, 28 and 56 days water curing. The replacement of fibres is considered as 0%, 0.5%, 1%, 1.5%, and 2% by weight of cement. Workability, Compressive, Split Tensile and Flexural strength is studied in this investigation. Superior strength was observed at optimum dosage of steel fibers at 1.5% by weight of cement


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Pornkasem Jongpradist ◽  
Watee Homtragoon ◽  
Raksiri Sukkarak ◽  
Warat Kongkitkul ◽  
Pitthaya Jamsawang

The potential and efficiency of using rice husk ash (RHA) to add up or partially replace Portland cement in deep cement mixing technique are examined. A series of unconfined compression tests on cement-RHA-stabilized clay are conducted to investigate the influence of RHA on the mixture properties. Special attention is paid to its efficiency for increasing the strength by partial cement replacement to obtain high-strength soil cement, and it is compared with fly ash. Test results indicate that up to 35% of RHA could be advantageously added up to enhance the strength if the cement content in the mixture is larger than 10%. The RHA enhances the strength of cement-admixed clay by larger than 100% at 28 days. For curing time of 14 and 28 days, the RHA exhibits higher efficiency on Portland cement replacement when the cement and overall cementitious contents are not less than 20 and 35%, respectively. The optimum condition for high-strength mixture is achieved when RHA is added to the 20% cement content mixture. When compared with fly ash of similar grain size, the efficiency of RHA is higher when the content to be added is greater than 15%. This indicates the suitability of RHA for use in high-strength soil-cement.


2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


2020 ◽  
Vol 995 ◽  
pp. 155-160
Author(s):  
Nurol Huda Dahalan ◽  
M.H. Abdul Mutalib ◽  
Hooi Min Yee ◽  
Mohd Haris Ridzuan Ooi ◽  
Haslinda Abdul Hamid

A lot of researchers have studied the rice husk brick and it is the most widely used material in earth construction. Although study has been carried out on rice husk brick previously, more in-depth study on the aspect of the optimal replacement levels of local black rice husk ash to the Ordinary Portland Cement (OPC) that will meet stated standard requirements for non load-bearing bricks need has not been carried out. Despite all the natural materials have been used in construction materials, black rice husk ash is important to be reviewed based on the rationale of availability and growing rice husk production year by year due to high demand of rice supply.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 522
Author(s):  
R. Ramya Swetha ◽  
Dr. G.Venkata Ramana ◽  
K. Anusha Hadassa

This investigation shows the results on aggressive sulphuric acid on the concrete combined with rice husk ash (RH) when partially replaced for ordinary Portland cement. The husk ash, which mainly contains aluminum ion, silica, iron and calcium oxides, is an industrial waste and poses disposal problems. In this study, the effect of various concentrations (1%, 3%, 5%) of sulphuric acid (H2SO4) on Concrete replaced with various percentages (0%,5%,10%,15% and 20% by weight of cement) of RH is evaluated in-terms of residual compressive strength. The loss of compressive strengths of concrete immersed in various H2SO4 solutions for 7 days 28 days and 60 days indicates that at upto 10% replacement increase in strength was observed after which strengths were decreasing. This increase in strength is attributed to pozzolanic activity of RH.  


2014 ◽  
Vol 660 ◽  
pp. 312-316
Author(s):  
Mochamad Solikin ◽  
Budi Setiawan

This paper reports an investigation on mechanical properties of high volume fly ash (HVFA) concrete produced using different types of mixing water i.e. tap water and saturated lime water. The mechanical properties of ordinary Portland cement concrete are also investigated as control tests. The concrete were tested for their compressive strength, flexural strength and splitting tensile strength at the curing ages of 56 days. The results showed that strength development of high volume fly ash concrete up to 56 days is lower than ordinary portal cement. In addition, the flexural strength and splitting strength of concrete are lower than ordinary Portland cement. Moreover, the use of saturated lime water as mixing water reduces the mechanical properties of class C high volume fly ash concrete.


Sign in / Sign up

Export Citation Format

Share Document