scholarly journals AMPK Activity Contributes to G2 Arrest and DNA Damage Decrease via p53/p21 Pathways in Oxidatively Damaged Mouse Zygotes

Author(s):  
Pei He ◽  
Zhiling Li ◽  
Feng Xu ◽  
Gaizhen Ru ◽  
Yue Huang ◽  
...  
Oncogene ◽  
2004 ◽  
Vol 23 (29) ◽  
pp. 4966-4974 ◽  
Author(s):  
Hyeon Ung Park ◽  
Jae-Hoon Jeong ◽  
Jay H Chung ◽  
John N Brady

2002 ◽  
Vol 80 (7) ◽  
pp. 618-624 ◽  
Author(s):  
P Jacquet ◽  
J Buset ◽  
J Vankerkom ◽  
S Baatout ◽  
L de Saint-Georges ◽  
...  

PCC (premature chromosome condensation) can be used for visualizing and scoring damage induced by radiation in the chromatin of cells undergoing a G1 or G2 arrest. A method involving the fusion of irradiated single embryonic cells with single MI oocytes was used to induce PCC in mouse zygotes of the BALB/c strain, which suffer a drastic G2 arrest after X-irradiation (dose used 2.5 Gy). Other G2-arrested embryos were exposed in vitro to the phosphatase inhibitor calyculin A. Both methods furnished excellent chromosome preparations of the G2-arrested embryos. The mean number of chromosome fragments did not change significantly during G2 arrest, suggesting that zygotes of this strain are unable to repair DNA damage leading to such aberrations. Forty to fifty percent of the irradiated embryos were unable to cleave after G2 arrest and remained blocked at the one-cell stage for a few days before dying. PCC preparations obtained from such embryos suggested that about 30% of them had undergone a late mitosis not followed by cytokinesis and had entered a new DNA synthesis. These results are discussed in the light of recent observations in irradiated human cells deficient in the p53/14-3-3sigma pathway.Key words: PCC, embryo, oocyte, calyculin A, G2 arrest, cytokinesis.


1996 ◽  
Vol 134 (4) ◽  
pp. 963-970 ◽  
Author(s):  
P Jin ◽  
Y Gu ◽  
D O Morgan

The activity of the mitosis-promoting kinase CDC2-cyclin B is normally suppressed in S phase and G2 by inhibitory phosphorylation at Thr14 and Tyr15. This work explores the possibility that these phosphorylations are responsible for the G2 arrest that occurs in human cells after DNA damage. HeLa cell lines were established in which CDC2AF, a mutant that cannot be phosphorylated at Thr14 and Tyr15, was expressed from a tetracycline-repressible promoter. Expression of CDC2AF did not induce mitotic events in cells arrested at the beginning of S phase with DNA synthesis inhibitors, but induced low levels of premature chromatin condensation in cells progressing through S phase and G2. Expression of CDC2AF greatly reduced the G2 delay that resulted when cells were X-irradiated in S phase. However, a significant G2 delay was still observed and was accompanied by high CDC2-associated kinase activity. Expression of wild-type CDC2, or the related kinase CDK2AF, had no effect on the radiation-induced delay. Thus, inhibitory phosphorylation of CDC2, as well as additional undefined mechanisms, delay mitosis after DNA damage.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e65044 ◽  
Author(s):  
Donghui Zhang ◽  
Yu Cui ◽  
Haitao Shen ◽  
Lingxiao Xing ◽  
Jinfeng Cui ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1604-1604
Author(s):  
Philip O. Saunders ◽  
Kenneth F. Bradstock ◽  
Linda J. Bendall

Abstract Five year survival for patients with relapsed pre-B ALL remains less than 10%, requiring new approaches to therapy. We sought to evaluate the potential of mTOR inhibitor RAD001 to enhance pre-B ALL cell killing by agents that induce DNA damage or microtubule disruption and identify interactions that may indicate novel approaches to therapy. Combining 16μM RAD001 with agents that cause DNA damage or microtubule disruption in vitro, enhanced caspase-dependent killing (p<0.05) of pre-B ALL cells. We observed 16μM RAD001 suppressed p53 and markedly attenuated p21 responses to DNA damage or vincristine. Lentiviral siRNA knock down of p53 in Nalm6 cells led to significantly increased (p<0.05) cell kill by vincristine relative to luciferase knockdown cells with an intact p53 response. This data indicates enhanced killing by combining RAD001 with DNA damage or vincristine does not require p53. Intracellular flow cytometry revealed that combining 16μM RAD001 with DNA damage or vincristine activates the JNK pathway. c-Jun has been reported to promote proliferation, apoptosis, suppress p53 and p21 promoters and prolong the half-life of p53 analogue, p73. Concordantly, we observed up regulation of p73, puma, bax, bim and cleaved caspase 3, associated with enhanced cell death. This data indicates that p73 provides an alternate pathway to apoptosis. We hypothesized that 16μM RAD001 enhances chemosensitivity through a JNK dependent suppression of cell cycle checkpoint regulation. We observed 1.5μM RAD001 inhibited pRb, Ki67 and PCNA expression, increasing G0/1 cell cycle arrest in response to DNA damage or vincristine, however 16μM RAD001 increased pRb, cyclin D1, Ki67, active CDC2 and PCNA expression. Increased DNA content, BrdU uptake and PCNA expression indicate cell cycle progression occurs in the presence of DNA damage or vincristine, when combined with 16μM RAD001. To validate the role of the JNK pathway in enhancing chemosensitivity we evaluated the impact of JNK inhibition on cell cycle regulation and cell survival. We observed enhanced cell cycle checkpoint regulation, indicated by reduced expression of c-jun, pRb, PCNA and Ki67 in Nalm6 cells. Furthermore, JNK inhibition enhanced G0/1 or G2 arrest in response to DNA damage in Nalm6 and REH cell lines respectively and enhanced G2 arrest in response to vincristine. JNK inhibition led to reduced cell kill by DNA damage or microtubule disruption in Nalm6 and REH cell lines. This data strongly suggests that impaired cell cycle regulation by 16μM RAD001 is mediated through a JNK dependent mechanism. We conclude that dose escalated RAD001 enhances chemosensitivity independently of p53, through a JNK dependent impairment of cell cycle regulation, in response to DNA damage or microtubule disruption. Our data indicates that dose escalated RAD001 has the potential to enhance chemosensitivity in patients with pre-B ALL and provides a rationale for combining agents which induce JNK activation with DNA damage or microtubule disruption, as a therapeutic strategy in pre-B ALL.


2004 ◽  
Vol 15 (9) ◽  
pp. 3965-3976 ◽  
Author(s):  
Fabienne Baus Charrier-Savournin ◽  
Marie-Thérèse Château ◽  
Véronique Gire ◽  
John Sedivy ◽  
Jacques Piette ◽  
...  

G2 arrest of cells suffering DNA damage in S phase is crucial to avoid their entry into mitosis, with the concomitant risks of oncogenic transformation. According to the current model, signals elicited by DNA damage prevent mitosis by inhibiting both activation and nuclear import of cyclin B1-Cdk1, a master mitotic regulator. We now show that normal human fibroblasts use additional mechanisms to block activation of cyclin B1-Cdk1. In these cells, exposure to nonrepairable DNA damage leads to nuclear accumulation of inactive cyclin B1-Cdk1 complexes. This nuclear retention, which strictly depends on association with endogenous p21, prevents activation of cyclin B1-Cdk1 by Cdc25 and Cdk-activating kinase as well as its recruitment to the centrosome. In p21-deficient normal human fibroblasts and immortal cell lines, cyclin B1 fails to accumulate in the nucleus and could be readily detected at the centrosome in response to DNA damage. Therefore, in normal cells, p21 exerts a dual role in mediating DNA damage-induced cell cycle arrest and exit before mitosis. In addition to blocking pRb phosphorylation, p21 directly prevents mitosis by inactivating and maintaining the inactive state of mitotic cyclin-Cdk complexes. This, with subsequent degradation of mitotic cyclins, further contributes to the establishment of a permanent G2 arrest.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56385 ◽  
Author(s):  
Joanna E. Gawecka ◽  
Joel Marh ◽  
Michael Ortega ◽  
Yasuhiro Yamauchi ◽  
Monika A. Ward ◽  
...  

Oncogene ◽  
2011 ◽  
Vol 30 (41) ◽  
pp. 4261-4274 ◽  
Author(s):  
G Lossaint ◽  
E Besnard ◽  
D Fisher ◽  
J Piette ◽  
V Dulić
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document