scholarly journals Leukemia Inhibitory Factor Induces Proopiomelanocortin via CRH/CRHR Pathway in Mouse Trophoblast

Author(s):  
He Wang ◽  
Hiromi Sakata-Haga ◽  
Hiroko Masuta ◽  
Mitsuhiro Tomosugi ◽  
Tsuyoshi Tsukada ◽  
...  

We previously showed that maternal leukemia inhibitory factor (LIF) induces placental production of adrenocorticotropic hormone (ACTH), which stimulates fetal nucleated red blood cells to further secrete LIF and promote neurogenesis in rodent brains. However, the underlying mechanism of LIF-dependent ACTH induction remains unclear. Recently, we found that LIF induces corticotropin-releasing hormone (CRH) in mouse trophoblast stem cells. This finding supports the results of a previous study that CRH, which is produced by the placenta, induces placental ACTH production. In this study, we examined whether the effects of LIF are mediated by the induction of Pomc via CRH upregulation in mouse trophoblast. In vivo, protein levels of LIF and CRH peak in mouse placenta at 13.5 days post coitum. In mouse placenta, Crh mRNA and protein levels significantly increased 3 h after intraperitoneal injection of LIF (5 μg/kg body weight) into dams at 13.5 days post coitum. We also examined the effect of LIF-induced CRH on the expression of Pomc induced by LIF in mouse trophoblast stem cells in vitro. After LIF supplementation for 3 days, we found that the increased expression of Crh-induced by new supplementation of LIF was earlier than that of Pomc. Furthermore, LIF-induced upregulation of Pomc in mouse trophoblast stem cells was attenuated by inhibition of the CRH/CRHR1 pathway, whereas LIF-induced secretion of ACTH was attenuated by inhibition of the JAK/STAT3 pathway. Therefore, LIF indirectly increases placental Pomc expression through the CRH/CRHR1 pathway, and placental ACTH secretion is induced directly by LIF via the JAK/STAT3 pathway.

2020 ◽  
Author(s):  
Jenna Kropp Schmidt ◽  
Michael G. Meyer ◽  
Gregory J. Wiepz ◽  
Lindsey N. Block ◽  
Brittany M. Dusek ◽  
...  

AbstractNonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSC) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first trimester placental villous cytotrophoblasts followed by culture in TSC medium to “reprogram” the cells to a proliferative state. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was >4,000-fold higher in ST culture media compared to TSC media. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and macaque placental nonclassical MHC class I molecule, Mamu-AG. TSC differentiation to extravillous trophoblasts (EVTs) with or without the ALK-5 inhibitor A83-01 resulted in differing morphologies but similar expression of Mamu-AG and CD56 as assessed by flow cytometry, hence further refinement of relevant EVT markers is needed. Our preliminary characterization of macaque TSCs suggests that these cells represent a proliferative, self-renewing TSC population capable of differentiating to STs in vitro thereby establishing an experimental model of primate placentation.


2020 ◽  
Vol 3 (2) ◽  
pp. e201900515 ◽  
Author(s):  
Daiji Kiyozumi ◽  
Itsuko Nakano ◽  
Ryoko Sato-Nishiuchi ◽  
Satoshi Tanaka ◽  
Kiyotoshi Sekiguchi

The niche is a specialized microenvironment for tissue stem cells in vivo. It has long been emphasized that niche ECM molecules act on tissue stem cells to regulate their behavior, but the molecular entities of these interactions remain to be fully elucidated. Here, we report that laminin forms the in vivo ECM niche for trophoblast stem cells (TSCs), the tissue stem cells of the placenta. TSCs expressed fibronectin-binding, vitronectin-binding, and laminin-binding integrins, whereas the integrin ligands present in the TSC niche were collagen and laminin. Therefore, the only niche integrin ligand available for TSCs in vivo was laminin. Laminin promoted TSC adhesion and proliferation in vitro in an integrin binding–dependent manner. Importantly, when the integrin-binding ability of laminin was genetically ablated in mice, the size of the TSC population was significantly reduced compared with that in control mice. The present findings underscore an ECM niche function of laminin to support tissue stem cell maintenance in vivo.


2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Kaori Motomura ◽  
Mami Oikawa ◽  
Michiko Hirose ◽  
Arata Honda ◽  
Sumie Togayachi ◽  
...  

Abstract Mouse trophoblast stem cells (TSCs) proliferate indefinitely in vitro, despite their highly heterogeneous nature. In this study, we sought to characterize TSC colony types by using methods based on cell biology and biochemistry for a better understanding of how TSCs are maintained over multiple passages. Colonies of TSCs could be classified into four major types: type 1 is compact and dome-shaped, type 4 is flattened but with a large multilayered cell cluster, and types 2 and 3 are their intermediates. A time-lapse analysis indicated that type 1 colonies predominantly appeared after passaging, and a single type 1 colony gave rise to all other types. These colony transitions were irreversible, but at least some type 1 colonies persisted throughout culture. The typical cells comprising type 1 colonies were small and highly motile, and they aggregated together to form primary colonies. A hierarchical clustering based on global gene expression profiles suggested that a TSC line containing more type 1 colony cells was similar to in vivo extraembryonic tissues. Among the known TSC genes examined, Elf5 showed a differential expression pattern according to colony type, indicating that this gene might be a reliable marker of undifferentiated TSCs. When aggregated with fertilized embryos, cells from types 1 and 2, but not from type 4, distributed to the polar trophectoderm in blastocysts. These findings indicate that cells typically found in type 1 colonies can persist indefinitely as stem cells and are responsible for the maintenance of TSC lines. They may provide key information for future improvements in the quality of TSC lines.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4618-4628 ◽  
Author(s):  
SJ Szilvassy ◽  
KP Weller ◽  
W Lin ◽  
AK Sharma ◽  
AS Ho ◽  
...  

Attempts to maintain or expand primitive hematopoietic stem cells in vitro without the concomitant loss of their differentiative and proliferative potential in vivo have largely been unsuccessful. To investigate this problem, we compared the ability of three cloned bone marrow (BM) stromal cell lines to support the growth of primitive Thy- 1lo Sca-1+H-2Khi cells isolated by fluorescence-activated cell sorting from the BM of Ly-5.2 mice treated 1 day previously with 5-fluo- rouracil. Sorted cells were highly enriched in cobblestone area-forming cells (CAFC), but their frequency was dependent on the stromal cell lines used in this assay (1 per 45 cells on SyS-1; 1 per 97 cells on PA6). In the presence of recombinant leukemia inhibitory factor (LIF), CAFC cloning efficiency was increased to 1 per 8 cells on SyS-1 and 1 per 11 cells on PA6, thus showing the high clonogenicity of this primitive stem cell population. More primitive stem cells with competitive repopulating potential were measured by injecting the sorted cells into lethally irradiated Ly-5.1 mice together with 10(5) radioprotective Ly-5.1 BM cells whose long-term repopulating ability has been “compromised” by two previous cycles of marrow transplantation and regeneration. Donor-derived lymphocytes and granulocytes were detected in 66% of animals injected with 50 sorted cells. To quantitate the maintenance of competitive repopulating units (CRU) by stromal cells, sorted cells were transplanted at limiting dilution before and after being cultured for 2 weeks on adherent layers of SyS-1, PA6, or S17 cells. CRU represented 1 per 55 freshly sorted cells. CRU could be recovered from cocultures supported by all three stromal cell lines, but their numbers were approximately-sevenfold less than on day 0. In contrast, the addition of LIF to stromal cultures improved CRU survival by 2.5-fold on S17 and PA6 cells (approximately two-fold to threefold decline), and enabled their maintenance on SyS-1. LIF appeared to act indirectly, because alone it did not support the proliferation of Thy- 1lo Sca-1+H-2Khi cells in stroma-free cultures. Polymerase chain reaction (RT-PCR) analysis revealed that Interleukin-1beta (IL-1 beta) IL-2, IL-6, granulocyte-colony stimulating factor, granulocyte macrophage-colony stimulating factor, transforming growth factors, LIF, and Steel Factor (SLF) mRNAs were upregulated in SyS-1 within 1 to 6 hours of LIF-stimulation. To determine if increased expression of SLF by LIF-stimulated SyS-1 cells could account for their capacity to support stem cells, sorted calls were cocultured on simian CV-E cells that were transfected with an expression vector encoding membrane-bound SLF, or supplemented with soluble SLF. In both cases, SLF synergized with IL-6 produced endogenously by CV-E cells enabling CAFC growth equivalent to that on LIF-stimulated SyS-1. CAFC development on LIF- stimulated SyS-1 could also be completely abrogated by an anti-SLF antibody. These data provide evidence for a role of LIF in the support of long-term repopulating stem cells by indirectly promoting cytokine expression by BM stroma. Furthermore, we have used quantitative assays to show a maintenance of CRU numbers, with retention of in vivo function following ex vivo culture.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
María Ángeles Marqués-Torrejón ◽  
Charles A. C. Williams ◽  
Benjamin Southgate ◽  
Neza Alfazema ◽  
Melanie P. Clements ◽  
...  

AbstractAdult neural stem cells (NSCs) must tightly regulate quiescence and proliferation. Single-cell analysis has suggested a continuum of cell states as NSCs exit quiescence. Here we capture and characterize in vitro primed quiescent NSCs and identify LRIG1 as an important regulator. We show that BMP-4 signaling induces a dormant non-cycling quiescent state (d-qNSCs), whereas combined BMP-4/FGF-2 signaling induces a distinct primed quiescent state poised for cell cycle re-entry. Primed quiescent NSCs (p-qNSCs) are defined by high levels of LRIG1 and CD9, as well as an interferon response signature, and can efficiently engraft into the adult subventricular zone (SVZ) niche. Genetic disruption of Lrig1 in vivo within the SVZ NSCs leads an enhanced proliferation. Mechanistically, LRIG1 primes quiescent NSCs for cell cycle re-entry and EGFR responsiveness by enabling EGFR protein levels to increase but limiting signaling activation. LRIG1 is therefore an important functional regulator of NSC exit from quiescence.


2014 ◽  
Vol 117 (3) ◽  
pp. 358-365 ◽  
Author(s):  
Hiroaki Aikawa ◽  
Miho Tamai ◽  
Keisuke Mitamura ◽  
Fakhria Itmainati ◽  
Glen N. Barber ◽  
...  

2018 ◽  
Author(s):  
Keli Peng ◽  
Xu Li ◽  
Congyu Wu ◽  
Yuna Wang ◽  
Jian Yu ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3085
Author(s):  
Biswas Neupane ◽  
Mona Fendereski ◽  
Farzana Nazneen ◽  
Yan-Lin Guo ◽  
Fengwei Bai

Zika virus (ZIKV) infection during pregnancy can cause devastating fetal neuropathological abnormalities, including microcephaly. Most studies of ZIKV infection in pregnancy have focused on post-implantation stage embryos. Currently, we have limited knowledge about how a pre-implantation stage embryo deals with a viral infection. This study investigates ZIKV infection on mouse trophoblast stem cells (TSCs) and their in vitro differentiated TSCs (DTSCs), which resemble the cellular components of the trophectoderm layer of the blastocyst that later develops into the placenta. We demonstrate that TSCs and DTSCs are permissive to ZIKV infection; however, ZIKV propagated in TSCs and DTSCs exhibit substantially lower infectivity, as shown in vitro and in a mouse model compared to ZIKV that was generated in Vero cells or mouse embryonic fibroblasts (MEFs). We further show that the low infectivity of ZIKV propagated in TSCs and DTSCs is associated with a reduced level of glycosylation on the viral envelope (E) proteins, which are essential for ZIKV to establish initial attachment by binding to cell surface glycosaminoglycans (GAGs). The decreased level of glycosylation on ZIKV E is, at least, partially due to the low-level expression of a glycosylation-related gene, Hexa, in TSCs and DTSCs. Furthermore, this finding is not limited to ZIKV since similar observations have been made as to the chikungunya virus (CHIKV) and West Nile virus (WNV) propagated in TSCs and DTSCs. In conclusion, our results reveal a novel phenomenon suggesting that murine TSCs and their differentiated cells may have adapted a cellular glycosylation system that can limit viral infectivity by altering the glycosylation of viral envelope proteins, therefore serving as a unique, innate anti-viral mechanism in the pre-implantation stage embryo.


Sign in / Sign up

Export Citation Format

Share Document