scholarly journals miR-27a-5p—Abundant Small Extracellular Vesicles Derived From Epimedium-Preconditioned Bone Mesenchymal Stem Cells Stimulate Osteogenesis by Targeting Atg4B-Mediated Autophagy

Author(s):  
Xiaoyun Li ◽  
Rumeng Chen ◽  
Yunchuan Li ◽  
Panpan Wang ◽  
Yan Cui ◽  
...  

Osteoporosis (OP) is a disease affecting the elderly and is characterized by incremental fractures and bone fragility. Small extracellular vesicles (sEVs) derived from mesenchymal stem cells have been demonstrated to possess potent regeneration potential. In this study, we evaluated the osteogenesis effects of sEVs derived from Epimedium-preconditioned bone mesenchymal stem cells (EPI-sEV) from osteoblasts and ovariectomized (OVX) rats. The underlying mechanism of EPI-sEV-induced osteogenesis was explored by RNA-sequencing and verified by transfection with the corresponding mimic and inhibitor. EPI-sEV stimulated osteogenic differentiation of osteoblasts and moderated both bone mass and microstructure in OVX rats. Sequencing identified a unique enrichment of a set of microRNAs (miRNAs) in EPI-sEV. Overexpression or inhibition in vitro demonstrated that the osteogenesis-inducing potential was primarily attributed to miR-27a-5p, one of the most abundant miRNAs in the EPI-sEV fraction. Dual-luciferase reporter assays showed that miR-27a-5p promoted osteogenesis through direct suppression of Atg4B by targeting its 3′ untranslated region. Additional experiments showed that miR-27a-5p suppressed autophagy that was activated in OVX rats. Moreover, osteogenic differentiation was ablated by the intervention with rapamycin in osteoblasts. These data report the regenerative potential of EPI-sEV to induce osteogenic differentiation of osteoblast cells leading to bone formation. This process is achieved by delivering sEV-miR-27a-5p to target Atg4B for further autophagy stimulation.

2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoyun Li ◽  
Yan Cui ◽  
Qing Lin ◽  
Panpan Wang ◽  
Rumeng Chen ◽  
...  

The bone microenvironment is crucial for the growth and development of different types of osteocytes. Small extracellular vesicles (sEVs) secreted by bone mesenchymal stem cells are delivered to target cells where their contents regulate biological functions. Here, we evaluated the osteogenic effects and mechanism of sEVs derived from Plastrum testudinis-preconditioned bone mesenchymal stem cells (PT-sEV). The osteogenic effects of PT-sEV were evaluated by the differentiation of osteoblasts and the alternation of bone quality and quantity in ovariectomized rats. The specific mechanism was explored by high-throughput sequencing and verified by transfection with the corresponding miRNA mimic and inhibitor. RNA-sequence identified a unique enrichment of a set of miRNAs in PT-sEV compared with sEVs derived from untreated BMSCs. Overexpression or inhibition in vitro indicated that the osteogenic inducing potential of sEVs was mainly attributable to miR-330-5p, one of the most dramatically downregulated miRNAs in the PT-sEV fraction. Dual luciferase reporter assays showed that miR-330-5p negatively regulated osteogenesis by directly binding to the 3′ untranslated region of Tnc. Additional experiments showed that Tnc regulated Wnt/β-catenin signaling, and rescue experiment showed that miR-330-5p could restore β-catenin expression; additionally, animal experiments indicated that Wnt signaling was inactivated in the ovariectomized rats. These data demonstrated the regenerative potential of PT-sEV, which induced osteogenic differentiation of pre-osteoblasts, leading to bone formation. This process was achieved by delivering miR-330-5p, which regulated Tnc to control Wnt/β-catenin signaling.


2016 ◽  
Vol 367 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Hua-ji Jiang ◽  
Xing-gui Tian ◽  
Shou-bin Huang ◽  
Guo-rong Chen ◽  
Min-jun Huang ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 9117-9125
Author(s):  
Ting Ma ◽  
Xi-Yuan Ge ◽  
Ke-Yi Hao ◽  
Xi Jiang ◽  
Yan Zheng ◽  
...  

Titanium discs with simple 3,4-dihydroxy-l-phenylalanine coating enhanced BM-MSC adhesion, spreading, proliferation and differentiation, and upregulated expression of genes involved in focal adhesion in vitro.


2019 ◽  
Vol 316 (1) ◽  
pp. C57-C69 ◽  
Author(s):  
Zihui Zhou ◽  
Yuanshan Lu ◽  
Yao Wang ◽  
Lin Du ◽  
Yunpeng Zhang ◽  
...  

Osteoporosis is a progressive bone disease characterized by decreased bone mass and density, which usually parallels a reduced antioxidative capacity and increased reactive oxygen species formation. Adipose-derived mesenchymal stem cells (ADMSCs), a population of self-renewing multipotent cells, are a well-recognized source of potential bone precursors with significant clinical potential for tissue regeneration. We previously showed that overexpressing stearoyl-CoA desaturase 1 (SCD-1) promotes osteogenic differentiation of mesenchymal stem cells. Micro-RNAs (miRNAs) are noncoding RNAs recently recognized to play key roles in many developmental processes, and miRNA let-7c is downregulated during osteoinduction. We found that let-7c was upregulated in the serum of patients with postmenopausal osteoporosis compared with healthy controls. Levels of let-7c during osteogenic differentiation of ADMSCs were examined under oxidative stress in vitro and found to be upregulated. Overexpression of let-7c inhibited osteogenic differentiation, whereas inhibition of let-7c function promoted this process, evidenced by increased expression of osteoblast-specific genes, alkaline phosphatase activity, and matrix mineralization. The luciferase reporter assay was used to validate SCD-1 as a target of let-7c. Further experiments showed that silencing of SCD-1 significantly attenuated the effect of let-7c inhibitor on osteoblast markers, providing strong evidence that let-7c modulates osteogenic differentiation by targeting SCD-1. Inhibition of let-7c promoted the translocation of β-catenin into nuclei, thus activating Wnt/β-catenin signaling. Collectively, these data suggest that let-7c is induced under oxidative stress conditions and in osteoporosis, reducing SCD-1 protein levels, switching off Wnt/β-catenin signaling, and inhibiting osteogenic differentiation. Thus, let-7c may be a potential therapeutic target in the treatment of osteoporosis and especially postmenopausal osteoporosis.


2020 ◽  
pp. 1-13
Author(s):  
Lu Deng ◽  
Chang Wang ◽  
Chao He ◽  
Li Chen

OBJECTIVE: Bone mesenchymal stem cells (BMSCs) have been widely researched in cancer treatment, including hepatocellular carcinoma (HCC). This study intended to discuss the mechanism of miR-20a-3p in BMSCs-extracellular vesicles (EVs) in HCC apoptosis. METHODS: BMSCs were isolated and identified. EVs derived from BMSCs were extracted and identified. After overexpressing or inhibiting miR-20a-3p expression in BMSCs, EVs were extracted and acted on HCC cells and transplanted tumors. HCC cell apoptosis in the treatment of BMSCs-conditioned medium, BMSCs-EVs and/or miR-20a-3p mimic/inhibitor were evaluated, with the detection of levels of TRAIL and TRAIL-related proteins. A functional rescue experiment about c-FLIP was carried out in HCC cells. The target binding relationship between miR-20a-3p and c-FLIP was detected. The subcutaneous tumorigenesis model of mice was established and injected with BMSCs-EVs to estimate the effect of BMSCs-EVs-miR-20a-3p on HCC growth. RESULTS: EVs isolated from BMSCs conditioned medium promoted the apoptosis of HCC cells. After BMSCs-EVs treatment, TRAIL levels, downstream proteins and miR-20a-3p were increased significantly, but the expression of c-FLIP was decreased. miR-20a-3p could target c-FLIP. BMSCs-EVs inhibited the growth of HCC cells, decreased c-FLIP expression, increased TRAIL levels, and promote the of HCC cell apoptosis. BMSCs-EVs with overexpressing miR-20a-3p further enhanced the apoptotic effect of HCC cells in vitro and in vivo. CONCLUSION: BMSCs-EVs-carried miR-20a-3p targets c-FLIP and increases TRAIL levels in HCC cells, thus promoting TRAIL-related apoptosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongsheng Zeng ◽  
Chengcheng Du ◽  
Pengcheng Xiao ◽  
Yiting Lei ◽  
Piao Zhao ◽  
...  

Bone morphogenetic protein 2 (BMP2) induces effective chondrogenesis of mesenchymal stem cells (MSCs) by promoting Sox9 expression. However, BMP2 also induces chondrocyte hypertrophy and endochondral ossification by upregulating Smad7 expression, which leads to the disruption of chondrogenesis. In addition, Smad7 can be inhibited by Sox9. Therefore, the underlying mechanism is not clear. Currently, an increasing number of studies have shown that microRNAs play a pivotal role in chondrogenic and pathophysiological processes of cartilage. The purpose of this study was to determine which microRNA is increased by Sox9 and targets Smad7, thus assisting BMP2 in maintaining stable chondrogenesis. We found that miR-322-5p meets the requirement through next-generation sequencing (NGS) and bioinformatic analysis. The targeting relationship between miR-322-5p and Smad7 was confirmed by dual-luciferase reporter assays, qPCR, and western blotting (WB). The in vitro study indicated that overexpression of miR-322-5p significantly inhibited Smad7 expression, thus causing increased chondrogenic differentiation and decreased hypertrophic differentiation, while silencing of miR-322-5p led to the opposite results. Flow cytometry (FCM) analysis indicated that overexpression of miR-322-5p significantly decreased the rate of early apoptosis in BMP2-stimulated MSCs, while silencing of miR-322-5p increased the rate. A mouse limb explant assay revealed that the expression of miR-322-5p was negatively correlated with the length of the BMP2-stimulated hypertrophic zone of the growth plate. An in vivo study also confirmed that miR-322-5p assisted BMP2 in chondrogenic differentiation. Taken together, our results suggested that Sox9-increased miR-322-5p expression can promote BMP2-induced chondrogenesis by targeting Smad7, which can be exploited for effective tissue engineering of cartilage.


2020 ◽  
Author(s):  
Jingying Hou ◽  
Lingyun Wang ◽  
Zhengfei Yang ◽  
Guanghui Zheng ◽  
Tianzhu Guo ◽  
...  

Abstract Background: Previous studies have demonstrated that hypoxia preconditioning (HP) can promote mesenchymal stem cells (MSCs) survival and vascularization. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a newly discovered regulator of MSCs viability and differentiation. Evidences have indicated that MALAT1 can be strongly induced by hypoxia. This study aimed to investigate the role of MALAT1 in HP mediated MSCs survival and vascularization as well as the relevant underlying mechanism in vitro.Methods: MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells at the third passage were divided into the following groups: normoxia (N), hypoxia preconditioning (HP), HP + MALAT1, HP + MALAT1 NC, HP+si-MALAT1 and HP +si-MALAT1 NC. The normoxia group was cultured in 20% O2 for 24 h. All the other groups were exposed to hypoxia (1% O2) for 24 hours. MALAT1 and relevant scramble RNA were transfected in the HP+MALAT1 and HP+MALAT1 NC groups respectively. HP+si-MALAT1 and HP +si-MALAT1 NC groups were transfected with MALAT1 siRNA and relevant siRNA scramble respectively. MSCs proliferation, apoptosis and vascular densities were evaluated. Bioinformatics and dual luciferase reporter assay were performed. Relevant biomarkers were examined in different experimental groups.Results: MSCs survival and vascularization were significantly enhanced in the HP group. Transfection of MALAT1 further strengthened the viability and angiogenic potential of MSCs in the condition of HP, whereas its knockdown attenuated cells survival and vascularization. MALAT1 and vascular endothelial growth factor A (VEGFA) were obviously increased after hypoxia exposure, while miR-195 was decreased. miR-195 targeted and downregulated VEGFA. miR-195 was a target of MALAT1. Overexpression of MALAT1 led to a decreased level of miR-195, accompanied with an augmented expression of VEGFA. However, both miR-195 and VEGFA exhibited contrary alterations after MALAT1 blockage. Conclusion: HP enhanced MSCs survival and vascularization potential in vitro, and the activation of MALAT1/miR-195/VEGFA axis might be involved in this procedure. This study reveals a new molecular mechanism of HP mediated MSCs survival and vascularization. It will be conducive for the development of novel strategies to improve the therapeutic efficiency of MSCs based on HP.


2021 ◽  
Vol 10 (8) ◽  
pp. 526-535
Author(s):  
Wei Xin ◽  
Shuai Yuan ◽  
Bo Wang ◽  
Qirong Qian ◽  
Yi Chen

Aims Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development. Methods RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations. Results Circ_0066523 was upregulated in osteogenic induction process of BMSCs. Silencing circ_0066523 restrained the proliferation and osteogenic differentiation of BMSCs. Mechanistically, circ_0066523 activated phosphatidylinositol-4,5-bisphosphate 3-kinase / AKT serine/threonine kinase 1 (PI3K/AKT) pathway via recruiting lysine demethylase 5B (KDM5B) to epigenetically repress the transcription of phosphatase and tensin homolog (PTEN). Functionally, AKT signalling pathway agonist or PTEN knockdown counteracted the effects of silenced circ_0066523 on BMSC proliferation and differentiation. Conclusion Circ_0066523 promotes the proliferation and differentiation of BMSCs by epigenetically repressing PTEN and therefore activating AKT pathway. This finding might open new avenues for the identification of therapeutic targets for osteoblast differentiation related diseases such as ONFH. Cite this article: Bone Joint Res 2021;10(8):526–535.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6993 ◽  
Author(s):  
Ruixue Li ◽  
Jian Sun ◽  
Fei Yang ◽  
Yang Sun ◽  
Xingwen Wu ◽  
...  

Mesenchymal stem cells (MSCs), which have multipotential differentiation and self-renewal potential, are possible cells for tissue engineering. Transforming growth factor β1 (TGFβ1) can be produced by MSCs in an inactive form, and the activation of TGFβ1 functions as an important regulator of osteogenic differentiation in MSCs. Recently, studies showed that Glycoprotein A repetitions predominant (GARP) participated in the activation of latent TGFβ1, but the interaction between GARP and TGFβ1 is still undefined. In our study, we successfully isolated the MSCs from bone marrow of rats, and showed that GARP was detected in bone mesenchymal stem cells (BMSCs). During the osteogenic differentiation of BMSCs, GARP expression was increased over time. To elucidate the interaction between GARP and TGFβ1, we downregulated GARP expression in BMSCs to examine the level of active TGFβ1. We then verified that the downregulation of GARP decreased the secretion of active TGFβ1. Furthermore, osteogenic differentiation experiments, alkaline phosphatase (ALP) activity analyses and Alizarin Red S staining experiments were performed to evaluate the osteogenic capacity. After the downregulation of GARP, ALP activity and Alizarin Red S staining significantly declined and the osteogenic indicators, ALP, Runx2, and OPN, also decreased, both at the mRNA and protein levels. These results demonstrated that downregulated GARP expression resulted in the reduction of TGFβ1 and the attenuation of osteoblast differentiation of BMSCs in vitro.


2021 ◽  
Vol 478 (4) ◽  
pp. 721-734
Author(s):  
Jian-Cheng Wu ◽  
Jie Sun ◽  
Jia-Cheng Xu ◽  
Zhen-Yu Zhou ◽  
Ya-Feng Zhang

Osteoporosis is a prevalent systemic skeletal disorder entailing bone fragility and increased fracture risk, often emerging in post-menopausal life. Emerging evidence implicates the dysregulation of microRNAs (miRNAs or miRs) in the progression of osteoporosis. This study investigated the effect of miR-199a-3p on osteoporosis and its underlying mechanism. We first examplished an ovariectomized (OVX)-induced rat osteoporosis model, and then isolated mesenchymal stem cells (MSCs) from bone marrow of the model rats. The overexpression and knock down of miR-199a-3p were conducted in OVX rats and MSCs to verify the role of miR-199a-3p on MSC differentiation. Calcium nodules were measured using alizarin red S (ARS) staining. RT-qPCR and Western blot assay were performed to measure the expression of miR-199a-3p, Kdm3a and osteogenic differentiation-related markers in rat tissues and cells. The correlation between miR-199a-3p and Kdm3a was confirmed using dual-luciferase reporter assay. The enrichment of Kdm3a at the Erk2 and Klf2 promoter was assessed using chromatin immunoprecipitation (ChIP) assay. Isolated MSCs were positive for CD29, CD44, CD90, and CD45, suggesting successful isolation of MSCs. There was increased expression of miR-199a-3p and inhibited osteogenic differentiation in OVX rats. Kdm3a was negatively targeted by miR-199a-3p. Our results also demonstrated that Kdm3a elevated the expression of Erk2 and Erk2 by promoting Erk2 and Klf2 demethylation, which further contributed to osteogenic differentiation. Overall, our results revealed a regulatory network of miR-199a-3p in osteogenic differentiation, highlighting miR-199a-3p as a potential target for therapeutic interventions in osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document