scholarly journals Sox9-Increased miR-322-5p Facilitates BMP2-Induced Chondrogenic Differentiation by Targeting Smad7 in Mesenchymal Stem Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongsheng Zeng ◽  
Chengcheng Du ◽  
Pengcheng Xiao ◽  
Yiting Lei ◽  
Piao Zhao ◽  
...  

Bone morphogenetic protein 2 (BMP2) induces effective chondrogenesis of mesenchymal stem cells (MSCs) by promoting Sox9 expression. However, BMP2 also induces chondrocyte hypertrophy and endochondral ossification by upregulating Smad7 expression, which leads to the disruption of chondrogenesis. In addition, Smad7 can be inhibited by Sox9. Therefore, the underlying mechanism is not clear. Currently, an increasing number of studies have shown that microRNAs play a pivotal role in chondrogenic and pathophysiological processes of cartilage. The purpose of this study was to determine which microRNA is increased by Sox9 and targets Smad7, thus assisting BMP2 in maintaining stable chondrogenesis. We found that miR-322-5p meets the requirement through next-generation sequencing (NGS) and bioinformatic analysis. The targeting relationship between miR-322-5p and Smad7 was confirmed by dual-luciferase reporter assays, qPCR, and western blotting (WB). The in vitro study indicated that overexpression of miR-322-5p significantly inhibited Smad7 expression, thus causing increased chondrogenic differentiation and decreased hypertrophic differentiation, while silencing of miR-322-5p led to the opposite results. Flow cytometry (FCM) analysis indicated that overexpression of miR-322-5p significantly decreased the rate of early apoptosis in BMP2-stimulated MSCs, while silencing of miR-322-5p increased the rate. A mouse limb explant assay revealed that the expression of miR-322-5p was negatively correlated with the length of the BMP2-stimulated hypertrophic zone of the growth plate. An in vivo study also confirmed that miR-322-5p assisted BMP2 in chondrogenic differentiation. Taken together, our results suggested that Sox9-increased miR-322-5p expression can promote BMP2-induced chondrogenesis by targeting Smad7, which can be exploited for effective tissue engineering of cartilage.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8970 ◽  
Author(s):  
Yu Xia ◽  
Xiao-Tao He ◽  
Xin-Yue Xu ◽  
Bei-Min Tian ◽  
Ying An ◽  
...  

Background Different phenotypes of macrophages (M0, M1 and M2 Mφs) have been demonstrated to play distinct roles in regulating mesenchymal stem cells in various in vitro and in vivo systems. Our previous study also found that cell-conditioned medium (CM) derived from M1 Mφs supported the proliferation and adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), whereas CM derived from either M0 or M2 Mφs showed an enhanced effect on cell osteogenic differentiation. However, the underlying mechanism remains incompletely elucidated. Exosomes, as key components of Mφ-derived CM, have received increasing attention. Therefore, it is possible that exosomes may modulate the effect of Mφ-derived CM on the property of BMMSCs. This hypothesis was tested in the present study. Methods In this study, RAW264.7 cells were induced toward M1 or M2 polarization with different cytokines, and exosomes were isolated from the unpolarized (M0) and polarized (M1 and M2) Mφs. Mouse BMMSCs were then cultured with normal complete medium or inductive medium supplemented with M0-Exos, M1-Exos or M2-Exos. Finally, the proliferation ability and the osteogenic, adipogenic and chondrogenic differentiation capacity of the BMMSCs were measured and analyzed. Results We found that only the medium containing M1-Exos, rather than M0-Exos or M2-Exos, supported cell proliferation and osteogenic and adipogenic differentiation. This was inconsistent with CM-based incubation. In addition, all three types of exosomes had a suppressive effect on chondrogenic differentiation. Conclusion Although our data demonstrated that exosomes and CM derived from the same phenotype of Mφs didn’t exert exactly the same cellular influences on the cocultured stem cells, it still confirmed the hypothesis that exosomes are key regulators during the modulation effect of Mφ-derived CM on BMMSC property.


2017 ◽  
Vol 357 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Long-Wei Hu ◽  
Xiao Wang ◽  
Xin-Qun Jiang ◽  
Li-Qun Xu ◽  
Hong-Ya Pan

2020 ◽  
Vol 8 (21) ◽  
pp. 4680-4693
Author(s):  
Jirong Yang ◽  
Yumei Xiao ◽  
Zizhao Tang ◽  
Zhaocong Luo ◽  
Dongxiao Li ◽  
...  

The different negatively charged microenvironments of collagen hydrogels affect the protein adsorption, cell morphology, and chondrogenic differentiation of BMSCs in vitro and in vivo.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jun Zhang ◽  
Ziming Liu ◽  
Yuwan Li ◽  
Qi You ◽  
Jibin Yang ◽  
...  

Background. FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective. The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods. In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3×105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results. In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion. hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.


2020 ◽  
Author(s):  
Ying Liu ◽  
Dan Lin ◽  
Haiyang Zhang ◽  
Huiya Wang ◽  
Ting Deng ◽  
...  

Abstract BACKGROUNDCancer-associated cachexia (CAC) is defined as a multifactorial syndrome including depletion of adipose tissue and skeletal muscle. Adipose tissue wasting, as a key characteristic of CAC, occurs early and is related with poor survival. However, the influence of exosomes on adipo-differentiation in CAC remained be mysterious.METHODSOil-red staining, western blotting, and real-time polymerase chain reaction (RT-PCR) were used to investigate the adipo-differentiation capacity of A-MSCs from GC patients and healthy donors. Adipo-differentiation capacity of A-MSCs treated with exosomes from GES-1 or GC cell lines was also detected. To further explore the effects of exosomal miR-155 on adipo-differentiation in vitro, we carried out luciferase reporter assay. Finally, to evaluate the function of exosomal miR-155 in vivo, BALB/c mice were subcutaneously transplanted with SGC7901 cells transfected with lentivirus containing a miR-155 overexpressing (miR-155 OE) sequence or miR-155 shRNA (miR-155 KO) or control lentivirus(NC) to observe the change of adipo-differentiation of A-MSCs.RESULTSWe showed that miR-155 was high expressed in adipose mesenchymal stem cells (A-MSCs) isolated from GC patients, which exhibited significantly suppressed adipo-differentiation. Mechanistically, targeting C/EPBβ and suppressing C/EPBα and PPARγ by GC exosomal miR-155 was demonstrated to be involved in impairing the differentiation of A-MSCs into adipocytes. The expression of C/EPBβ C/EPBα and PPARγ were rescued through downregulating miR-155 in GC exosomes. Moreover, overexpression of miR-155 improved cancer cachexia in tumor-implanted mice, charactered by weight loss, tumor progression and low expression of C/EPBβ, C/EPBα, and PPARγ in A-MSCs as well as FABP4 in tumor-related adipose tissue. Decreasing level of miR-155 in implanted tumor blocked the anti-adipogenic effects of GC. CONCLUSIONGC exosomsal miR-155 suppressed adipo-differentiation of A-MSCs via targeting C/EPBβ of A-MSCs plays a crucial role in CAC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wanshun Liu ◽  
Binyu Wang ◽  
Ao Duan ◽  
Kai Shen ◽  
Qi Zhang ◽  
...  

Abstract Background Osteosarcoma (OS) is a malignant tumor originating from mesenchymal stem cells, and has an extremely high fatality rate and ability to metastasize. Although mounting evidence suggests that miR-769-5p is strongly associated with the malignant progression and poor prognosis of various tumors, the exact role of miR-769-5p in OS is still unclear. Therefore, this study aimed to explore the relationship between miR-769-5p and the malignant progression of OS, and its underlying mechanism of action. Methods miR-769-5p expression was analyzed in GSE28423 from the GEO database and measured in OS clinical specimens and cell lines. The effects of miR-769-5p on OS proliferation, migration and invasion were measured both in vivo and in vitro. In addition, bioinformatics analyses and luciferase reporter assays were used to explore the target genes of miR-769-5p. Rescue experiments were also conducted. Moreover, a co-culture model was used to test the cell interaction between bone mesenchymal stem cells (BMSC) and OS cells. Results We found that miR-769-5p is highly expressed in OS clinical specimens and cell lines. In vivo and in vitro experiments also showed that miR-769-5p significantly promoted the proliferation, migration and invasion of OS cells. Dual-specific phosphatase 16 (DUSP16) was negatively associated with miR-769-5p expression in OS cells and tissue samples and was validated as the downstream target by luciferase reporter assay and western blotting. Rescue experiments showed that DUSP16 reverses the effect of miR-769-5p on OS cells by negatively regulating the JNK/p38 MAPK signaling pathway. Additionally, the results of the co-culture of BMSCs and OS cells confirmed that miR-769-5p was transferred from BMSCs to OS cells through exosomes. Conclusions In summary, this study demonstrates for the first time that BMSC-derived exosomal miR-769-5p promotes OS proliferation and metastasis by targeting DUSP16 and activating the JNK/p38 MAPK signaling pathway, which could provide rationale for a new therapeutic strategy for OS.


2021 ◽  
Author(s):  
Jian Zhang ◽  
Yao Lu ◽  
Yangming Mao ◽  
Yue Yu ◽  
Tianyu Wu ◽  
...  

Abstract Background: Mesenchymal stem cells (MSCs) activated with IFN-γ elicit more powerful physical effects. Exosomes (Exos) secreted from MSCs have protective against myocardial injury. The aim of this study was to investigate whether Exsos derived from IFN-γ-pretreated MSCs exhibit more potent cardioprotective function and the underlying mechanisms. Methods: Exos were isolated from MSCs (Ctrl-Exo) and IFN-γ-primed MSCs (IFN-γ-Exo) and were then delivered to H9c2 cells or human umbilical vein endothelial cells (HUVECs) in vitro under oxygen and glucose deprivation (OGD) condition or in vivo in an infarcted rat heart. RNA sequencing was to identify the different expressed functional transcription factor (TF). Quantitative reverse transcription-PCR (qPCR) was to confirm the upregulated TF and miRNA in IFN-γ-primed MSCs. Dual-luciferase reporter gene assay were to analyze the transcriptional regulation of miRNAs by STAT1. The target of miR-21-5p (miR-21) was disclosed by luciferase reporter assays and qPCR. The function of BTG2 was verified in vitro under OGD condition.Result: IFN-γ-Exo accelerated migration, tube-like structure formation, and prevented H9c2 from OGD-induced apoptosis. Similarly, IFN-γ-Exo leaded to further reduction in fibrosis size, reduced cardiomyocyte apoptosis and improved cardiac function compared to Ctrl-Exo. miR-21 was significantly upregulated in both IFN-γ-primed MSCs and IFN-γ-Exo. STAT1 transcriptionally induced miR-21 expression. Up-regulated miR-21 can inhibit the expression of BTG2. BTG2 promoted H9c2 cells apoptosis and reversed the protective effect of miR-21 under OGD environment.Conclusion: IFN-γ-Exo have enhanced therapeutic efficacy against acute MI possibly through promoting angiogenesis and anti-apoptotic effect through increasing the level of miR-21, which directly targeted on BTG2.


2020 ◽  
Author(s):  
Ilona Uzieliene ◽  
Edvardas Bagdonas ◽  
Kazuto Hoshi ◽  
Tomoaki Sakamoto ◽  
Atsuhiko Hikita ◽  
...  

Abstract Background: Due to its low capacity for self-repair, articular cartilage is highly susceptible to damage and deterioration, which leads to the development of degenerative joint diseases such as osteoarthritis. Menstrual blood-derived mesenchymal stem cells (MenSCs) are much less characterized compared to bone marrow mesenchymal stem cells (BMMSCs). However, MenSCs seem an attractive alternative to classical BMMSCs due to ease of access and broader differentiation capacity. The aim of this study was to evaluate chondrogenic differentiation potential of MenSCs and BMMSCs stimulated with transforming growth factor β (TGF-β3) and activin A, member of the TGF-β superfamily of proteins.Methods: MenSCs (n=6) and BMMSCs (n=5) were isolated from different healthy donors. Expression of cell surface markers CD90, CD73, CD105, CD44, CD45, CD14, CD36, CD55, CD54, CD63, CD106, CD34, CD10, Notch1 was analysed by flow cytometry. Cell proliferation capacity was determined using CCK-8 proliferation kit. Adipogenic differentiation capacity was evaluated according to Oil-Red staining, osteogenic differentiation - Alizarin Red staining. Chondrogenic differentiation (Activin A and TGF-β3 stimulation) was induced in vitro and in vivo (subcutaneous scaffolds in nude BALB/c mice) and investigated by histologically and by expression of chondrogenic genes (collagen type II, aggrecan). Activin A protein production was evaluated by ELISA.Results: MenSCs exhibited a higher proliferation rate, as compared to BMMSCs, and a different expression profile of several cell surface markers. Activin A stimulated collagen type II gene expression and glycosaminoglycan synthesis in TGF-β3 treated MenSCs but not in BMMSCs, both in vitro and in vivo, although the effects of TGF-β3 alone were more pronounced in BMMSCs in vitro. Conclusion: These data suggest that activin A exerts differential effects on the induction of chondrogenic differentiation in MenSCs vs. BMMSCs, which implies that different mechanisms of chondrogenic regulation are activated in these cells. Following further optimisation of differentiation protocols and the choice of growth factors, potentially including activin A, MenSCs may turn out to be a promising population of stem cells for the development of cell-based therapies with the capacity to stimulate cartilage repair and regeneration.Trial registration: Not applicable.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3837-3844 ◽  
Author(s):  
Farida Djouad ◽  
Pascale Plence ◽  
Claire Bony ◽  
Philippe Tropel ◽  
Florence Apparailly ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are largely studied for their potential clinical use. Recently, they have gained further interest after demonstration of an immunosuppressive role. In this study, we investigated whether in vivo injection of MSCs could display side effects related to systemic immunosuppression favoring tumor growth. We first showed in vitro that the murine C3H10T1/2 (C3) MSC line and primary MSCs exhibit immunosuppressive properties in mixed lymphocyte reaction. We demonstrated that this effect is mediated by soluble factors, secreted only on “activation” of MSCs in the presence of splenocytes. Moreover, the immunosuppression is mediated by CD8+ regulatory cells responsible for the inhibition of allogeneic lymphocyte proliferation. We then demonstrated that the C3 MSCs expressing the human bone morphogenetic protein 2 (hBMP-2) differentiation factor were not rejected when implanted in various allogeneic immunocompetent mice and were still able to differentiate into bone. Importantly, using a murine melanoma tumor model, we showed that the subcutaneous injection of B16 melanoma cells led to tumor growth in allogeneic recipients only when MSCs were coinjected. Although the potential side effects of immunosuppression induced by MSCs have to be considered in further clinical studies, the usefulness of MSCs for various therapeutic applications still remains of great interest. (Blood. 2003;102:3837-3844)


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 118 ◽  
Author(s):  
Silvia Minardi ◽  
Joseph S. Fernandez-Moure ◽  
Dongmei Fan ◽  
Matthew B. Murphy ◽  
Iman K. Yazdi ◽  
...  

Bone morphogenetic protein-2 (BMP-2) has been demonstrated to be one of the most vital osteogenic factors for bone augmentation. However, its uncontrolled administration has been associated with catastrophic side effects, which compromised its clinical use. To overcome these limitations, we aimed at developing a safer controlled and sustained release of BMP-2, utilizing poly(lactic-co-glycolic acid)-multistage vector composite microspheres (PLGA-MSV). The loading and release of BMP-2 from PLGA-MSV and its osteogenic potential in vitro and in vivo was evaluated. BMP-2 in vitro release kinetics was assessed by ELISA assay. It was found that PLGA-MSV achieved a longer and sustained release of BMP-2. Cell cytotoxicity and differentiation were evaluated in vitro by MTT and alkaline phosphatase (ALP) activity assays, respectively, with rat mesenchymal stem cells. The MTT results confirmed that PLGA-MSVs were not toxic to cells. ALP test demonstrated that the bioactivity of BMP-2 released from the PLGA-MSV was preserved, as it allowed for the osteogenic differentiation of rat mesenchymal stem cells, in vitro. The biocompatible, biodegradable, and osteogenic PLGA-MSVs system could be an ideal candidate for the safe use of BMP-2 in orthopedic tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document