scholarly journals Distinct Signaling Pathways Distinguish in vivo From in vitro Growth in Murine Ovarian Follicle Activation and Maturation

Author(s):  
Mahboobeh Amoushahi ◽  
Karin Lykke-Hartmann

Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.

Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Mohammad Jafari Atrabi ◽  
Parimah Alborzi ◽  
Vahid Akbarinejad ◽  
Rouhollah Fathi

Summary In vitro activation of primordial follicles could serve as a safe method to preserve fertility in patients with cancer subjected to ovarian tissue cryopreservation during oncotherapy, however the culture medium for this purpose requires to be optimized. Granulosa cell conditioned medium (GCCM) has been recognized to enhance primordial follicle activation and the present study was conducted to understand whether addition of pyruvate, a combination of insulin, transferrin and selenium (ITS) or testosterone to GCCM could improve its efficiency in this regard. To this end, 1-day-old mouse ovaries were cultured in four different media including CON (control; containing GGCM only), PYR (containing GCCM plus pyruvate), ITS (containing GCCM plus ITS) or TES (containing GCCM plus testosterone) for 11 days. Furthermore, follicular dynamics and gene expression of factors involved in follicular development were assessed using histological examination and RT-PCR, respectively, on days 5 and 11 of culture. Pyruvate decreased follicular activation, but it enhanced the progression of follicles to the primary stage. Moreover, it upregulated Bmp15 and Cx37 (P < 0.05). In the ITS group, activation of follicles was not affected and total number of follicles was reduced by day 11 of culture. Additionally, ITS downregulated Pi3k, Gdf9, Bmp15 and Cx37 (P < 0.05). Although testosterone did not affect primordial follicle activation, it enhanced the development of follicles up to the preantral stage (P < 0.05). Furthermore, testosterone inhibited the expression of Pten but stimulated the expression of Gdf9 and Cx37 (P < 0.05). In conclusion, the present study revealed that inclusion of pyruvate and testosterone into GCCM could enhance the early development of follicles in cultured 1-day-old mouse ovaries.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
C De Roo ◽  
S Lierman ◽  
K Tilleman ◽  
P De Sutter

Abstract STUDY QUESTION What is the role of the Hippo and PI3K/Akt pathway in follicles during ovarian tissue culture in tissue derived from oncological patients and transgender men? SUMMARY ANSWER Results highlight a Hippo pathway driven primordial follicle activation in vitro, predominantly from Day 0 to Day 4. WHAT IS KNOWN ALREADY In-vitro ovarian tissue culture aims at activating and maturing primordial follicles for fertility restoration in patients with a threatened ovarian reserve. Not all patients are eligible for ovarian cortex transplantation and therefore several groups are attempting to culture ovarian tissue in-vitro. Cortex fragmentation disrupts the Hippo pathway, leading to increased expression of downstream growth factors and follicle growth. The PI3K/Akt pathway is considered the intracellular pathway to where different extracellular factors involved in primordial follicle activation in-vivo converge. In order to optimise current ovarian tissue culture models, information on progression of these pathways during tissue culture is mandatory. STUDY DESIGN, SIZE, DURATION The first step of a multistep cortex culture system was performed using 144 ovarian cortex pieces from a total of six patients. Per patient, 24 cortical strips were cultured for 6 days and six pieces per patient were collected for downstream analysis of follicle development and Hippo and PI3K/Akt pathway targets every second day. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was obtained from oncological (N = 3; 28.67 ± 4.51 years) and transgender (N = 3; 23.33 ± 1.53 years) patients. Follicles were analysed using haematoxylin-eosin staining and pathways were studied using immunohistochemistry and precise follicle excision by laser capture micro-dissection for RT-qPCR analysis. MIQE guidelines for RT-qPCR were pursued. Reference gene selection (GAPDH, RPL3A, 18s rRNA) was performed using GeNorm Reference Gene Selection Kit. Statistical analysis was conducted with IBM SPSS Statistics 23 (Poisson regression, negative binomial regression, ANOVA and paired t-test). MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical analysis confirmed a Hippo pathway driven primordial follicle activation due to mechanical manipulation of the cortical strips. Ovarian tissue preparation and culture induced the inhibitory phosphorylated Yes-associated protein (pYAP) to disappear in granulosa cells of primordial follicles on Day 2. The stimulatory YAP on the contrary appeared in primordial granulosa cells over increasing culture days. Looking at the YAP target connective tissue growth factor (CTGF), a significantly up-regulated CTGF was noted in primordial follicles when comparing Day 2 and Day 4 (ratio Day 2/4 = 0.082; P &lt; 0.05), clearly showing an effect on the Hippo pathway in primordial follicles during tissue culture. Follicle classification showed a significant drop in estimated primordial follicle counts in the oncological cohort (−78%; P = 0.021) on Day 2 and in the transgender cohort on Day 4 (−634%; P = 0.008). Intermediate follicle counts showed a non-significant increasing trend to during culture and this follicle recruitment and growth resulted in a significant rise in estimated primary follicle counts on Day 6 in oncological patients (170%; P = 0.025) and, although limited in absolute numbers, a significant increase in secondary follicles on Day 4 (367%; P = 0.021) in the transgender cohort. Subsequent antral follicle development could not be observed. LIMITATIONS, REASONS FOR CAUTION A limitation is the small sample size, inherent to this study subject, especially as a large amount of tissue was needed per patient to reduce inter-patient variation in different downstream analysis techniques. A particular and specific weakness of this study is the inability to include an age-matched control group. WIDER IMPLICATIONS OF THE FINDINGS These findings support an adapted tissue preparation for Hippo pathway disruption and a shorter first phase of tissue culture. This work may also have implications for transplantation of cryopreserved tissue as larger strips (and thus slower burnout due to less Hippo pathway disruption) could be a benefit. STUDY FUNDING/COMPETING INTEREST(S) This research was financially supported by the Foundation Against Cancer (Stichting tegen Kanker, TBMT001816N), the Flemish Foundation of Scientific Research (FWO Vlaanderen, FWO G0.065.11N10) and the Gender Identity Research and Education Society (GIRES) foundation. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 537-549 ◽  
Author(s):  
Regislane P. Ribeiro ◽  
Antonia M.L.R. Portela ◽  
Anderson W.B. Silva ◽  
José J.N. Costa ◽  
José R.S. Passos ◽  
...  

SummaryThis study aims to investigate the effects of jacalin and follicle-stimulating hormone (FSH) on activation and survival of goat primordial follicles, as well as on gene expression in cultured ovarian tissue. Ovarian fragments were cultured for 6 days in minimum essential medium (MEM) supplemented with jacalin (10, 25, 50 or 100 μg/ml – Experiment 1) or in MEM supplemented with jacalin (50 μg/ml), FSH (50 ng/ml) or both (Experiment 2). Non-cultured and cultured tissues were processed for histological and ultrastructural analysis. Cultured tissues from Experiment 2 were also stored to evaluate the expression of BMP-15, KL (Kit ligand), c-kit, GDF-9 and proliferating cell nuclear antigen (PCNA) by real-time polymerase chain reaction (PCR). The results of Experiment 1 showed that, compared with tissue that was cultured in control medium, the presence of 50 μg/ml of jacalin increased both the percentages of developing follicles and viability. In Experiment 2, after 6 days, higher percentages of normal follicles were observed in tissue cultured in presence of FSH, jacalin or both, but no synergistic interaction between FSH and jacalin was observed. These substances had no significant effect on the levels of mRNA for BMP-15 and KL, but FSH increased significantly the levels of mRNA for PCNA and c-kit. On the other hand, jacalin reduced the levels of mRNA for GDF-9. In conclusion, jacalin and FSH are able to improve primordial follicle activation and survival after 6 days of culture. Furthermore, presence of FSH increases the expression of mRNA for PCNA and c-kit, but jacalin resulted in lower GDF-9 mRNA expression.


Reproduction ◽  
2020 ◽  
Author(s):  
Michael J Bertoldo ◽  
Valentina Rodriguez Paris ◽  
Debra A Gook ◽  
Melissa C Edwards ◽  
Katherine Wu ◽  
...  

Ovarian tissue cryopreservation and future transplantation is the only strategy to preserve the fertility of young female adolescent and pre-pubertal patients. The primary challenge to ovarian graft longevity is the substantial loss of primordial follicles during the period of ischemia post-transplantation. Nicotinamide mononucleotide (NMN), a precursor of the essential metabolite nicotinamide adenine dinucleotide (NAD+), is known to reduce ischemic damage. Therefore, the objective of the current study was to assess the impact of short- and long-term NMN administration on follicle number and health following ovarian tissue transplantation. Hemi-ovaries from C57Bl6 mice (n=8-12/group) were transplanted under the kidney capsule of bilaterally ovariectomised severe combined immunodeficient (SCID) mice. Recipient mice were administered either normal drinking water or water supplemented with NMN (2g/L) for either 14 or 56 days. At the end of each treatment period ovarian transplants were collected. There was no effect of NMN on the resumption of oestrous or length of oestrous cycles. Transplantation significantly reduced the total number of follicles with the greatest impact observed at the primordial follicle stage. We report that NMN did not prevent this loss. While NMN did not significantly impact the proportion of apoptotic follicles, NMN normalised PCNA expression at the primordial and intermediate stages but not at later stages. In conclusion, NMN administration did not prevent ovarian follicle loss under the conditions of this study.


2018 ◽  
Vol 26 (8) ◽  
pp. 1094-1104
Author(s):  
Liping Zheng ◽  
Ruichen Luo ◽  
Tie Su ◽  
Liaoliao Hu ◽  
Fengxin Gao ◽  
...  

The activation of primordial follicles is critical to ovarian follicle development, which directly influences female fertility and reproductive life span. Several studies have suggested a role for long noncoding RNAs (lncRNAs) in ovarian function. However, the precise involvement of lncRNAs in the initiation of primordial follicles is still unknown. Here, an in vitro culture model was used to investigate the roles of lncRNAs in primordial follicle activation. We found that primordial follicles in day 3 mouse ovaries were activated after culturing for 8 days in vitro, as indicated by ovarian morphology changes, increases in primary follicle number, and downregulation of mammalian Sterile 20-like kinase messenger RNA (mRNA) and upregulation of growth differentiation factor 9 mRNA. We next examined lncRNA expression profiles by RNA sequencing at the transcriptome level and found that among 60 078 lncRNAs, 6541 lncRNA were upregulated and 2135 lncRNA were downregulated in 3-day ovaries cultured for 8 days in vitro compared with ovaries from day 3 mice. We also found that 4171 mRNAs were upregulated and 1795 were downregulated in the cultured ovaries. Gene ontology and pathway analyses showed that the functions of differentially expressed lncRNA targets and mRNAs were closely linked with many processes and pathways related to ovary development, including cell proliferation and differentiation, developmental processes, and other signaling transduction pathways. Additionally, many novel identified lncRNAs showed inducible expression, suggesting that these lncRNAs may be good candidates for investigating mouse primordial follicle activation. This study provides a foundation for further exploring lncRNA-related mechanisms in the initiation of mouse primordial follicles.


Reproduction ◽  
2008 ◽  
Vol 136 (6) ◽  
pp. 703-715 ◽  
Author(s):  
H M Picton ◽  
S E Harris ◽  
W Muruvi ◽  
E L Chambers

The development of technologies to grow oocytes from the most abundant primordial follicles to maturity in vitro holds many attractions for clinical practice, animal production technology and research. The production of fertile oocytes and live offspring has been achieved in mice following the long-term culture of oocytes in primordial follicles from both fresh and cryopreserved ovarian tissue. In contrast, in non-rodent species advances in follicle culture are centred on the growth of isolated preantral follicles. As a functional unit, mammalian preantral follicles are well-suited to culture but primordial and primary follicles do not grow well after isolation from the ovarian stroma. The current challenges for follicle culture are numerous and include: optimisation of culture media and the tailoring of culture environments to match the physiological needs of the cell in vivo; the maintenance of cell–cell communication and signalling during culture; and the evaluation of the epigenetic status, genetic health and fertility of in vitro derived mature oocytes. In large animals and humans, the complete in vitro growth and maturation of oocytes is only likely to be achieved following the development of a multistage strategy that closely mimics the ovary in vivo. In this approach, primordial follicle growth will be initiated in situ by the culture of ovarian cortex. Isolated preantral follicles will then be grown to antral stages before steroidogenic function is induced in the somatic cells. Finally, cytoplasmic and nuclear maturation will be induced in the in vitro derived oocytes with the production of fertile metaphase II gametes.


2020 ◽  
Author(s):  
Chan Yang ◽  
Qinghua Liu ◽  
Yingjun Chen ◽  
Xiaodong Wang ◽  
Zaohong Ran ◽  
...  

Abstract Previous studies have shown that long-term intake of exogenous melatonin can effectively delay ovarian aging, but the mechanism has not been fully elucidated. We observed that SNAT, the rate-limiting enzyme in the melatonin synthetic pathway, is localized in primordial and early follicle, and that granulosa cells isolated from follicle can synthesize melatonin. In vitro cultured neonatal mice ovaries with melatonin inhibited primordial follicle activation and early follicle growth. In vivo experiments further indicated that daily injections of melatonin to neonatal mice during the primordial follicle activation phase can reduce the number of activated follicles by inhibiting the PI3K-AKT-FOXO3 pathway; during the early follicle growth phase, injections of melatonin significantly suppressed early follicle growth and atresia, and transcriptome data showed that multiple pathways involved in folliculogenesis, including PI3K-AKT, were suppressed. Further, SNAT knockout in mice resulted in a significant increase in follicle activation and atresia, and eventually accelerated ovarian aging. We also demonstrated that prolonged high-dose melatonin intake had no obvious adverse effect on the health condition of mice. This study confirms that endogenous melatonin is involved in the regulation of ovarian aging, and reveals that melatonin delays ovarian aging by inhibiting primordial follicle activation, early follicle growth and atresia.


2020 ◽  
Vol 41 (6) ◽  
pp. 847-872
Author(s):  
Johanne Grosbois ◽  
Melody Devos ◽  
Isabelle Demeestere

Abstract In recent years, ovarian tissue cryopreservation has rapidly developed as a successful method for preserving the fertility of girls and young women with cancer or benign conditions requiring gonadotoxic therapy, and is now becoming widely recognized as an effective alternative to oocyte and embryo freezing when not feasible. Primordial follicles are the most abundant population of follicles in the ovary, and their relatively quiescent metabolism makes them more resistant to cryoinjury. This dormant pool represents a key target for fertility preservation strategies as a resource for generating high-quality oocytes. However, development of mature, competent oocytes derived from primordial follicles is challenging, particularly in larger mammals. One of the main barriers is the substantial knowledge gap regarding the regulation of the balance between dormancy and activation of primordial follicles to initiate their growing phase. In addition, experimental and clinical factors also affect dormant follicle demise, while the mechanisms involved remain largely to be elucidated. Moreover, most of our basic knowledge of these processes comes from rodent studies and should be extrapolated to humans with caution, considering the differences between species in the reproductive field. Overcoming these obstacles is essential to improving both the quantity and the quality of mature oocytes available for further fertilization, and may have valuable biological and clinical applications, especially in fertility preservation procedures. This review provides an update on current knowledge of mammalian primordial follicle activation under both physiological and nonphysiological conditions, and discusses implications for fertility preservation and priorities for future research.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Carmen Terren ◽  
Michelle Nisolle ◽  
Carine Munaut

Abstract Background Cryopreservation and transplantation of ovarian tissue (OTCTP) represent a promising fertility preservation technique for prepubertal patients or for patients requiring urgent oncological management. However, a major obstacle of this technique is follicle loss due to, among others, accelerated recruitment of primordial follicles during the transplantation process, leading to follicular reserve loss in the graft and thereby potentially reducing its lifespan. This study aimed to assess how cryopreservation itself impacts follicle activation. Results Western blot analysis of the PI3K/PTEN/Akt and mTOR signalling pathways showed that they were activated in mature or juvenile slow-frozen murine ovaries compared to control fresh ovaries. The use of pharmacological inhibitors of follicle signalling pathways during the cryopreservation process decreased cryopreservation-induced follicle recruitment. The second aim of this study was to use in vitro organotypic culture of cryopreserved ovaries and to test pharmacological inhibitors of the PI3K/PTEN/Akt and mTOR pathways. In vitro organotypic culture-induced activation of the PI3K/PTEN/Akt pathway is counteracted by cryopreservation with rapamycin and in vitro culture in the presence of LY294002. These results were confirmed by follicle density quantifications. Indeed, follicle development is affected by in vitro organotypic culture, and PI3K/PTEN/Akt and mTOR pharmacological inhibitors preserve primordial follicle reserve. Conclusions Our findings support the hypothesis that inhibitors of mTOR and PI3K might be an attractive tool to delay primordial follicle activation induced by cryopreservation and culture, thus preserving the ovarian reserve while retaining follicles in a functionally integrated state.


2021 ◽  
Vol 22 (12) ◽  
pp. 6570
Author(s):  
Yue Lv ◽  
Rui-Can Cao ◽  
Hong-Bin Liu ◽  
Xian-Wei Su ◽  
Gang Lu ◽  
...  

A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.


Sign in / Sign up

Export Citation Format

Share Document