scholarly journals Restoration of Visual Function and Cortical Connectivity After Ischemic Injury Through NeuroD1-Mediated Gene Therapy

Author(s):  
Yu Tang ◽  
Qiuyu Wu ◽  
Mang Gao ◽  
Esther Ryu ◽  
Zifei Pei ◽  
...  

Neural circuits underlying brain functions are vulnerable to damage, including ischemic injury, leading to neuronal loss and gliosis. Recent technology of direct conversion of endogenous astrocytes into neurons in situ can simultaneously replenish the neuronal population and reverse the glial scar. However, whether these newly reprogrammed neurons undergo normal development, integrate into the existing neuronal circuit, and acquire functional properties specific for this circuit is not known. We investigated the effect of NeuroD1-mediated in vivo direct reprogramming on visual cortical circuit integration and functional recovery in a mouse model of ischemic injury. After performing electrophysiological extracellular recordings and two-photon calcium imaging of reprogrammed cells in vivo and mapping the synaptic connections formed onto these cells ex vivo, we discovered that NeuroD1 reprogrammed neurons were integrated into the cortical microcircuit and acquired direct visual responses. Furthermore, following visual experience, the reprogrammed neurons demonstrated maturation of orientation selectivity and functional connectivity. Our results show that NeuroD1-reprogrammed neurons can successfully develop and integrate into the visual cortical circuit leading to vision recovery after ischemic injury.

Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


2018 ◽  
Vol 39 (12) ◽  
pp. 2406-2418 ◽  
Author(s):  
Su Jing Chan ◽  
Hui Zhao ◽  
Kazuhide Hayakawa ◽  
Chou Chai ◽  
Chong Teik Tan ◽  
...  

Modulator of apoptosis 1 (MOAP-1) is a Bax-associating protein highly enriched in the brain. In this study, we examined the role of MOAP-1 in promoting ischemic injuries following a stroke by investigating the consequences of MOAP-1 overexpression or deficiency in in vitro and in vivo models of ischemic stroke. MOAP-1 overexpressing SH-SY5Y cells showed significantly lower cell viability following oxygen and glucose deprivation (OGD) treatment when compared to control cells. Consistently, MOAP-1−/− primary cortical neurons were observed to be more resistant against OGD treatment than the MOAP-1+/+ primary neurons. In the mouse transient middle cerebral artery occlusion (tMCAO) model, ischemia triggered MOAP-1/Bax association, suggested activation of the MOAP-1-dependent apoptotic cascade. MOAP-1−/− mice were found to exhibit reduced neuronal loss and smaller infarct volume 24 h after tMCAO when compared to MOAP-1+/+ mice. Correspondingly, MOAP-1−/− mice also showed better integrity of neurological functions as demonstrated by their performance in the rotarod test. Therefore, both in vitro and in vivo data presented strongly support the conclusion that MOAP-1 is an important apoptotic modulator in ischemic injury. These results may suggest that a reduction of MOAP-1 function in the brain could be a potential therapeutic approach in the treatment of acute stroke.


2015 ◽  
Vol 93 (4) ◽  
pp. 428-439 ◽  
Author(s):  
Irene Cuadrado-Berrocal ◽  
María V. Gómez-Gaviro ◽  
Yolanda Benito ◽  
Alicia Barrio ◽  
Javier Bermejo ◽  
...  

2016 ◽  
Author(s):  
Nathaniel C. Wright ◽  
Ralf Wessel

A primary goal of systems neuroscience is to understand cortical function, which typically involves studying spontaneous and sensory-evoked cortical activity. Mounting evidence suggests a strong and complex relationship between the ongoing and evoked state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope; it records the activities of a minority of neurons, and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but are difficult to obtain in vivo. Here, we record subthreshold cortical visual responses in the ex vivo turtle eye-attached whole-brain preparation, which is ideally-suited to such a study. In the absence of visual stimulation, the network is “synchronous”; neurons display network-mediated transitions between low- and high-conductance membrane potential states. The prevalence of these slow-wave transitions varies across turtles and recording sessions. Visual stimulation evokes similar high-conductance states, which are on average larger and less reliable when the ongoing state is more synchronous. Responses are muted when immediately preceded by large, spontaneous high-conductance events. Evoked spiking is sparse, highly variable across trials, and mediated by concerted synaptic inputs that are in general only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2037 ◽  
Author(s):  
Tavakolian-Ardakani ◽  
Hosu ◽  
Cristea ◽  
Mazloum-Ardakani ◽  
Marrazza

Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010–2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Qunhua Huang ◽  
April Kalinowski ◽  
Kashif Jafri ◽  
Monica Palmeri ◽  
Raymond R Russell ◽  
...  

The neuregulin-1 (NRG)/erbB signaling axis is emerging as an important mediator of endothelial/myocyte crosstalk. We have previously shown that NRG can protect cardiac myocytes from apoptosis induced by hypoxic injury and that endothelial cells can provide this NRG in an ex vivo co-culture model. To extend this observation to an intact animal system, we have generated mice with inducible and endothelial-selective deletion of NRG. We hypothesized that animals with decreased endothelial NRG expression would be more susceptible to ischemic injury. Mice carrying a transgene for tamoxifen-inducible expression of cre recombinase under control of the Tie2 promoter were crossed with those carrying homozygously floxed NRG-1 genes. Serial echocardiographic measurements of cardiac function were performed before, during and after tamoxifen induction. There was no significant decrease in cardiac function following the completion of the induction (NRG knockout) protocol. Hearts from these mice underwent a global ischemia/reperfusion protocol in the Langendorff mode. Both resting and post-ischemic +/−dP/dT and left ventricular developed pressure were impaired in the animals with endothelial selective NRG deletion compared to non-induced transgenics or tamoxifen-induced controls. Hearts from the NRG deleted animals released more CPK and contained significantly more apoptotic nuclei compared to controls after ischemia/reperfusion, supporting the idea that endothelial-derived NRG can protect myocytes against apoptosis in vivo. Another mechanism by which loss of NRG may contribute to cardiac dysfunction in the setting of ischemia is by altering cardiac myocyte glucose uptake. We have shown that adult rat cardiomyocyte glucose uptake is significantly increased in response to NRG and that this response is abrogated partially by wortmannin, but completely by wortmannin plus compound C (an inhibitor of AMP-activated protein kinase), suggesting that both AKT and AMPK dependent pathways of glucose uptake may be activated by NRG in adult myocytes. Thus, we conclude that NRG plays an important role in preservation of cardiac myocyte function in vivo and that this may occur as a result of both protection against apoptosis and enhanced glucose metabolism.


2020 ◽  
Author(s):  
Hyeong-Geol Shin ◽  
Jingu Lee ◽  
Young Hyun Yun ◽  
Seong Ho Yoo ◽  
Jinhee Jang ◽  
...  

ABSTRACTObtaining a histological fingerprint from the in-vivo brain has been a long-standing target of magnetic resonance imaging (MRI). In particular, non-invasive imaging of iron and myelin, which are involved in normal brain functions and are histopathological hallmarks in a few neurodegenerative diseases, has practical utilities in neuroscience and medicine. Here, we propose a biophysical model that describes the individual contribution of iron and myelin to MRI signals via their difference in magnetic susceptibility (i.e., paramagnetic iron vs. diamagnetic myelin). Using this model, we develop a method, χ-separation, that generates the voxel-wise distributions of iron and myelin. The method is validated using computer simulation and phantom experiments, and applied to ex-vivo and in-vivo brains. The results delineate the well-known histological features of iron and myelin in the specimen (e.g., co-localization of iron and myelin in Gennari line), healthy volunteers (e.g., myelin-lacking and iron-rich pulvinar), and multiple sclerosis patients (e.g., demyelinated iron-rim lesion). This new in-vivo histology technology, taking less than 20 min, may serve as a practical tool for exploring the microstructural information of the brain.


2021 ◽  
Author(s):  
Carmen Klein Herenbrink ◽  
Jonatan Fullerton Stoier ◽  
William Dalseg Reith ◽  
Abeer Dagra ◽  
Miguel Alejandro Cuadrado Gregorek ◽  
...  

Dopamine serves an important role in supporting both locomotor control and higher brain functions such as motivation and learning. Dopaminergic dysfunction is implicated in an equally multidimensional spectrum of neurological and neuropsychiatric diseases. Extracellular dopamine levels are known to be tightly controlled by presynaptic dopamine transporters (DAT), which is also a main target of psychostimulants. Still, detailed data on dopamine dynamics in space and time is needed to fully understand how dopamine signals are encoded and translated into cellular and behavioral responses, and to uncover the pathological effects of dopamine-related diseases. The recently developed genetically encoded fluorescent dopamine sensors enable unprecedented monitoring of dopamine dynamics and have changed the field of in vivo dopamine recording. However, the potential of these sensors to be used for in vitro and ex vivo assays remains unexplored. Here, we demonstrate a generalizable blueprint for making dopamine 'sniffer' cells for multimodal detection of dopamine in vitro and ex vivo. We generated sniffer cell lines with inducible expression of six different dopamine sensors and performed a head-to-head comparison of sensor properties to guide users in sensor selection. In proof-of-principle experiments, we show how the sniffer cells can be applied to measure release of endogenous dopamine from cultured neurons and striatal slices, and for determining total dopamine content in striatal tissue. Furthermore, we use the sniffer cells to quantify DAT-mediated dopamine uptake, and AMPH-induced and constitutive dopamine efflux as a radiotracer free, high-throughput alternative to electrochemical- and radiotracer-based assays. Importantly, the sniffer cells framework can readily be applied to other transmitter systems for which the list of genetically encoded fluorescent sensors is rapidly growing.


2021 ◽  
Author(s):  
Su Z Hong ◽  
Lukas Mesik ◽  
Cooper D Grossman ◽  
Jeremiah Y Cohen ◽  
Boram Lee ◽  
...  

Reinforcement allows organisms to learn which stimuli predict subsequent biological relevance. Hebbian mechanisms of synaptic plasticity are insufficient to account for reinforced learning because neuromodulators signaling biological relevance are delayed with respect to the neural activity associated with the stimulus. A theoretical solution is the concept of eligibility traces (eTraces), silent synaptic processes elicited by activity which upon arrival of a neuromodulator are converted into a lasting change in synaptic strength. Previously we demonstrated in visual cortical slices the Hebbian induction of eTraces and their conversion into LTP and LTD by the retroactive action of norepinephrine and serotonin Here we show in vivo in V1 that the induction of eTraces and their conversion to LTP/D by norepinephrine and serotonin respectively potentiates and depresses visual responses. We also show that the integrity of this process is crucial for ocular dominance plasticity, a canonical model of experience-dependent plasticity.


2019 ◽  
Vol 77 (17) ◽  
pp. 3401-3422 ◽  
Author(s):  
Jennifer Steens ◽  
Kristian Unger ◽  
Lea Klar ◽  
Anika Neureiter ◽  
Karolin Wieber ◽  
...  

Abstract Cell-based therapies using adult stem cells are promising options for the treatment of a number of diseases including autoimmune and cardiovascular disorders. Among these, vascular wall-derived mesenchymal stem cells (VW-MSCs) might be particularly well suited for the protection and curative treatment of vascular damage because of their tissue-specific action. Here we report a novel method for the direct conversion of human skin fibroblasts towards MSCs using a VW-MSC-specific gene code (HOXB7, HOXC6 and HOXC8) that directs cell fate conversion bypassing pluripotency. This direct programming approach using either a self-inactivating (SIN) lentiviral vector expressing the VW-MSC-specific HOX-code or a tetracycline-controlled Tet-On system for doxycycline-inducible gene expressions of HOXB7, HOXC6 and HOXC8 successfully mediated the generation of VW-typical MSCs with classical MSC characteristics in vitro and in vivo. The induced VW-MSCs (iVW-MSCs) fulfilled all criteria of MSCs as defined by the International Society for Cellular Therapy (ISCT). In terms of multipotency and clonogenicity, which are important specific properties to discriminate MSCs from fibroblasts, iVW-MSCs behaved like primary ex vivo isolated VW-MSCs and shared similar molecular and DNA methylation signatures. With respect to their therapeutic potential, these cells suppressed lymphocyte proliferation in vitro, and protected mice against vascular damage in a mouse model of radiation-induced pneumopathy in vivo, as well as ex vivo cultured human lung tissue. The feasibility to obtain patient-specific VW-MSCs from fibroblasts in large amounts by a direct conversion into induced VW-MSCs could potentially open avenues towards novel, MSC-based therapies.


Sign in / Sign up

Export Citation Format

Share Document