scholarly journals Wild-Type p53-Induced Phosphatase 1 Plays a Positive Role in Hematopoiesis in the Mouse Embryonic Head

Author(s):  
Wenyan He ◽  
Ying Zhang ◽  
Zhan Cao ◽  
Zehua Ye ◽  
Xun Lu ◽  
...  

The first adult repopulating hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, which are produced from hemogenic endothelial cells. Embryonic head is the other site for HSC development. Wild-type p53-induced phosphatase 1 (Wip1) is a type-2Cδ family serine/threonine phosphatase involved in various cellular processes such as lymphoid development and differentiation of adult HSCs. Most recently, we have shown that Wip1 modulates the pre-HSC maturation in the AGM region. However, it is not clear whether Wip1 regulates hematopoiesis in the embryonic head. Here we reported that disruption of Wip1 resulted in a decrease of hematopoietic progenitor cell number in the embryonic head. In vivo transplantation assays showed a reduction of HSC function after Wip1 ablation. We established that Wip1 deletion reduced the frequency and cell number of microglia in the embryonic head. Further observations revealed that Wip1 absence enhanced the gene expression of microglia-derived pro-inflammatory factors. Thus, it is likely that Wip1 functions as a positive regulator in HSC development by regulating the function of microglia in the embryonic head.

1995 ◽  
Vol 15 (8) ◽  
pp. 4249-4259 ◽  
Author(s):  
A M Yahanda ◽  
J M Bruner ◽  
L A Donehower ◽  
R S Morrison

Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes.


2001 ◽  
Vol 114 (18) ◽  
pp. 3359-3366 ◽  
Author(s):  
Gary Davidson ◽  
Rosanna Dono ◽  
Rolf Zeller

To examine the potential role of fibroblast growth factor (FGF) signalling during cell differentiation, we used conditionally immortalised podocyte cells isolated from kidneys of Fgf2 mutant and wild-type mice. Wild-type mouse podocyte cells upregulate FGF2 expression when differentiating in culture, as do maturing podocytes in vivo. Differentiating wild-type mouse podocyte cells undergo an epithelial to mesenchymal-like transition, reorganise their actin cytoskeleton and extend actin-based cellular processes; all of these activities are similar to the activity of podocytes in vivo. Molecular analysis of Fgf2 mutant mouse podocyte cells reveals a general disruption of FGF signalling as expression of Fgf7 and Fgf10 are also downregulated. These FGF mutant mouse podocyte cells in culture fail to activate mesenchymal markers and their post-mitotic differentiation is blocked. Furthermore, mutant mouse podocyte cells in culture fail to reorganise their actin cytoskeleton and form actin-based cellular processes. These studies show that FGF signalling is required by cultured podocytes to undergo the epithelial to mesenchymal-like changes necessary for terminal differentiation. Together with other studies, these results point to a general role for FGF signalling in regulating cell differentiation and formation of actin-based cellular processes during morphogenesis.


2010 ◽  
Vol 16 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Qiang Huang ◽  
Zhibo Xia ◽  
Yongping You ◽  
Peiyu Pu

2020 ◽  
Vol 6 (17) ◽  
pp. eaaw8500
Author(s):  
Hong-Mei Li ◽  
Yan-Ran Bi ◽  
Yang Li ◽  
Rong Fu ◽  
Wen-Cong Lv ◽  
...  

The zinc finger transcription factor Snail is aberrantly activated in many human cancers and associated with poor prognosis. Therefore, targeting Snail is expected to exert therapeutic benefit in patients with cancer. However, Snail has traditionally been considered “undruggable,” and no effective pharmacological inhibitors have been identified. Here, we found a small-molecule compound CYD19 that forms a high-affinity interaction with the evolutionarily conserved arginine-174 pocket of Snail protein. In aggressive cancer cells, CYD19 binds to Snail and thus disrupts Snail’s interaction with CREB-binding protein (CBP)/p300, which consequently impairs CBP/p300-mediated Snail acetylation and then promotes its degradation through the ubiquitin-proteasome pathway. Moreover, CYD19 restores Snail-dependent repression of wild-type p53, thus reducing tumor growth and survival in vitro and in vivo. In addition, CYD19 reverses Snail-mediated epithelial-mesenchymal transition (EMT) and impairs EMT-associated tumor invasion and metastasis. Our findings demonstrate that pharmacologically targeting Snail by CYD19 may exert potent therapeutic effects in patients with cancer.


2018 ◽  
Vol 10 (436) ◽  
pp. eaao3003 ◽  
Author(s):  
Luis A. Carvajal ◽  
Daniela Ben Neriah ◽  
Adrien Senecal ◽  
Lumie Benard ◽  
Victor Thiruthuvanathan ◽  
...  

The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell–enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.


Gut ◽  
1999 ◽  
Vol 44 (3) ◽  
pp. 366-371 ◽  
Author(s):  
M Ohashi ◽  
F Kanai ◽  
H Ueno ◽  
T Tanaka ◽  
K Tateishi ◽  
...  

BACKGROUND/AIMSGastric cancer is one of the most prevalent forms of cancer in East Asia. Point mutation of the p53 gene has been reported in more than 60% of cases of gastric cancer and can lead to genetic instability and uncontrolled cell proliferation. The purpose of this investigation was to evaluate the potential of p53 gene therapy for gastric cancer.METHODSThe responses of human gastric cancer cell lines, MKN1, MKN7, MKN28, MKN45, and TMK-1, to recombinant adenoviruses encoding wild type p53 (AdCAp53) were analysed in vitro. The efficacy of the AdCAp53 treatment for MKN1 and MKN45 subcutaneous tumours in nude mice was assessed in vivo.RESULTSp53-specific growth inhibition was observed in vitro in two of four gastric cancer cell lines with mutated p53, but not in the wild type p53 cell line. The mechanism of the killing of gastric cancer cells by AdCAp53 was found, by flow cytometric analysis and detection of DNA fragmentation, to be apoptosis. In vivo studies showed that the growth of subcutaneous tumours of p53 mutant MKN1 cells was significantly inhibited by direct injection of AdCAp53, but no significant growth inhibition was detected in the growth of p53 wild type MKN45 tumours.CONCLUSIONSAdenovirus mediated reintroduction of wild type p53 is a potential clinical utility in gene therapy for gastric cancers.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 32-32
Author(s):  
Lei Wang ◽  
Linda Yang ◽  
Marie–Dominique Filippi ◽  
David A. Williams ◽  
Yi Zheng

Abstract The Rho family GTPase Cdc42 has emerged as a key signal transducer in cell regulation. To investigate its physiologic function in hematopoiesis, we have generated mice carrying a gene targeted null allele of cdc42gap, a major negative regulatory gene of Cdc42 and mice with conditional targeted cdc42 allele (cdc42flox/flox). Deletion of the respective gene products in mice was confirmed by PCR genotyping and Western blotting. Low-density fetal liver or bone marrow cells from Cdc42GAP−/− mice displayed ~3 fold elevated Cdc42 activity and normal RhoA, Rac1 or Rac2 activity, indicating that cdc42gap deletion has a specific effect on Cdc42 activity. The Cdc42GAP-deficient hematopoietic stem/progenitor cells (HSC/Ps, Lin−c-Kit+) generated from Cdc42GAP−/− E14.5 fetal liver and the Cdc42−/− HSC/Ps derived by in vitro expression of Cre via a retrovirus vector from Cdc42flox/flox low density bone marrow showed a growth defect in liquid culture that was associated with increased apoptosis but normal cell cycle progression. Cdc42GAP-deficient HSC/Ps displayed impaired cortical F-actin assembly with extended actin protrusions upon exposure to SDF–1 in vitro and a punctuated actin structure after SCF stimulation while Cdc42−/− but not wild type HSC/Ps responded to SDF-1 in inducing membrane protrusions. Both Cdc42−/− and Cdc42GAP−/− HSC/Ps were markedly decreased in adhesion to fibronectin. Moreover, both Cdc42−/− and Cdc42GAP−/− HSC/Ps showed impaired migration in response to SDF-1. These results demonstrate that Cdc42 regulation is essential for multiple HSC/P functions. To understand the in vivo hematopoietic function of Cdc42, we have characterized the Cdc42GAP−/− mice further. The embryos and newborns of homozygous showed a ~30% reduction in hematopoietic organ (i.e. liver, bone marrow, thymus and spleen) cellularity, consistent with the reduced sizes of the animals. This was attributed to the increased spontaneous apoptosis associated with elevated Cdc42/JNK/Bid activities but not to a proliferative defect as revealed by in vivo TUNEL and BrdU incorporation assays. ~80% of Cdc42GAP−/− mice died one week after birth, and the surviving pups attained adulthood but were anemic. Whereas Cdc42GAP−/− mice contained small reduction in the frequency of HSC markers and normal CFU-G, CFU-M, and CFU-GM activities, the frequency of BFU-E and CFU-E were significantly reduced. These results suggest an important role of Cdc42 in erythropoiesis in vivo. Taken together, we propose that Cdc42 is essential for multiple HSC/P functions including survival, actin cytoskeleton regulation, adhesion and migration, and that deregulation of its activity can have a significant impact on erythropoiesis. Cdc42 regulates HSC/P functions and erythropoiesis Genotype/phenotype Apoptosis increase Adhesion decrease Migration decrease F-actin assembly HSC frequency decrease BFU-E, CFU-E decrease The numbers were indicated as fold difference compared with wild type. ND:not determined yet. Cdc42GAP−/− 2.43, p<0.005 0.97, p<0.01 1.01, p<0.01 protrusion (SDF-1); punctruated (SCF) 0.34, p<0.05 0.92, p<0.01; 0.38, p<0 Cdc42−/− 3.68, p<0.005 0.98, p<0.001 3.85, p<0.005 protrusion (SDF-1) ND ND


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 31-31
Author(s):  
Wen-Shu Wu ◽  
Dong Xu ◽  
Stefan Heinrichs ◽  
A. Thomas Look

Abstract An antiapoptotic role for Slug/Snail in mammals was suggested by studies in C. elegans, where CES-1/Scratch, a member of the Slug/Snail superfamily, was found to control the apoptotic death of NSM sister neurons by acting as a transcriptional repressor of EGL-1, a BH3-only proapoptotic protein. Identification of Slug as the target gene of the E2A-HLF oncoprotein in human pro-B leukemia cells led us to demonstrate its antiapoptotic function in IL-3-dependent murine pro-B cells. In contrast to its aberrant expression in pro-B leukemia cells, endogenous Slug is normally expressed in both LT-HSC and ST-HSC, as well as committed progenitors of the myeloid series, but not in pro-B and pro-T cells, implying its function in myelopoiesis. Using Slug−/− mice produced in our laboratory, we showed that these knockouts are much more radiosensitive than Slug+/− and wild-type mice, and that apoptotic cells increase significantly in the hematopoietic progenitor cells of Slug−/− mice as compared to wild-type mice following γ-irradiation, indicating a radioprotective function in vivo. We showed here that although the development of myeloid progenitors is not impaired under steady-state conditions, their repopulation is incomplete γ-irradiated in in Slug−/− mice. We demonstrate further the radiation-induced death of Slug−/− mice is exclusively a result of bone marrow failure with no apparent contribution from systemic injures to other tissues. By two-way bone marrow transplantation, we provide firm evidence that Slug protects mice from γ-irradiation-induced death in a cell-autonomous manner. Interestingly, regenerative capacity of hematopoietic stem cells (HSC) was retained in irradiated Slug−/− mice, which could be rescued by wild-type bone marrow cells after irradiation, indicating that Slug exerts its radioprotective function in myeloid progenitors rather than HSCs. Furthermore, we establish that Slug radioprotects mice by antagonizing downstream of the p53-mediated apoptotic signaling through inhibition of the p53-resposive proapoptotic gene Puma, leading in turn to inhibition of the mitochondria-dependent apoptotic pathway activated by γ-irradiation in myeloid progenitors. More interestingly, we observed that Slug is inducible by γ-irradiation in a p53-dependent manner. Together, our findings implicate a novel Slug-mediated feedback mechanism by which p53 control programmed cell death in myeloid progenitor cells in vivo in response to γ-irradiation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 717-717
Author(s):  
Nithya Krishnan ◽  
Jeff R. Bailey ◽  
Victoria Summey-Harner ◽  
Claudio Brunstein ◽  
Catherine M. Verfaillie ◽  
...  

Abstract Bcr-Abl, the translocation product of the Philadelphia chromosome implicated in human chronic myelogenous leukemia (CML), is a kinase affecting hematopoietic stem cell (HSC) behavior with respect to proliferation, apoptosis, adhesion and migration. Rho GTPases, particularly the Rac subfamily, have been shown to regulate these same cell functions in normal HSC and also regulate gene expression in many mammalian cells. BCR contains a “GTPase-activating protein” domain and a guanine nucleotide exchange domain, the latter or which is preserved in p210 Bcr-Abl. Since HSC functions regulated by Bcr-Abl and Rac are similar, we studied the potential involvement of Rac activation in Bcr-Abl signaling cascade. Human CML samples demonstrate baseline activation of Rac proteins that is reversed by in vitro treatment with STI571. To study the specific involvement of Rac2, we used a gene targeted mouse model with Rac2 null bone marrow. Using retovirus-mediated gene transfer, we introduced p210 Bcr-Abl in the MSCV vector into wild-type or Rac2−/− HSC/P and studied the behavior of these cells in vitro and in vivo. Irradiated recipient mice injected with LDBM cells transduced with p210 developed a uniformly fatal myeloproliferative syndrome (Median survival: 45 days, N=12), while mice injected with p210 transduced Rac2−/− LDBM cells (N=12, 2 independent exp.) had 100% survival and no development of leukocytosis, splenomegaly or organ infiltration of hematopoietic cells. These data suggest that Rac GTPases are critical for the transformation of HSC by Bcr-Abl and provide an additional therapeutic target for intervention in CML. WILD TYPE Rac 2 −/− Empty Vector MSCV-p210 Empty vector MSCV-p210 *p < 0.01 vs WT-MIEG3, **p< 0.01 vs WT-p210 bcr-abl. Proliferation (CPM) Medium 562 ± 278 16,207± 1605* 819.7 ± 363 3,135.5 ± 498** SCF (100ng/ml) 856 ± 187 23,226 ± 2203* 853.7 ± 524 3,756.8 ± 207** Cytokines (SCF, GCSF, MGDF) 8011± 1412 42,711± 13393* 4833 ±1019 3,614.5 ± 1982** Migration (%) Fibronectin 7 ± 0.4 38 ± 1.9* 0.4 ± 0.0 0.8 ± 0.1** SDF-1α 30 ±2.8 13 ±1.1* 0.5 ± 0.0 0.6 ± 0.0** Adhesion (% ) Fibronectin 76± 2.9 40 ±3* 4 ±0.4 10 ±0.1 **


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5143-5143
Author(s):  
Liesbeth De Waele ◽  
Kathleen Freson ◽  
Chantal Thys ◽  
Christel Van Geet ◽  
Désiré Collen ◽  
...  

Abstract The prevalence of congenital platelet disorders has not been established but for some life-threatening bleeding disorders the current therapies are not adequate, justifying the development of alternative strategies as gene therapy. In the case of platelet dysfunction and thrombocytopenia as described for GATA1 deficiency, potentially lethal internal bleedings can occur. The objective of the study is to develop improved lentiviral vectors for megakaryocyte(MK)-specific long term gene expression by ex vivo transduction of hematopoietic stem cells (HSC) to ultimately use for congenital thrombopathies as GATA1 deficiency. Self-inactivating lentiviral vectors were constructed expressing GFP driven by the murine (m) or human (h) GPIIb promoter. These promoters contain multiple Ets and GATA binding sites directing MK-specificity. To evaluate the cell lineage-specificity and transgene expression potential of the vectors, murine Sca1+ and human CD34+ HSC were transduced in vitro with Lenti-hGPIIb-GFP and Lenti-mGPIIb-GFP vectors. After transduction the HSC were induced to differentiate in vitro along the MK and non-MK lineages. The mGPIIb and hGPIIb promoters drove GFP expression at overall higher levels (20% in murine cells and 25% in human cells) than the ubiquitous CMV (cytomegalovirus) or PGK (phosphoglycerate kinase) promoters, and this exclusively in the MK lineage. Interestingly, in both human and murine HSC the hGPIIb promoter with an extra RUNX and GATA binding site, was more potent in the MK lineage compared to the mGPIIb promoter. Since FLI1 and GATA1 are the main transcription factors regulating GPIIb expression, we tested the Lenti-hGPIIb-GFP construct in GATA1 deficient HSC and obtained comparable transduction efficiencies as for wild-type HSC. To assess the MK-specificity of the lentiviral vectors in vivo, we transplanted irradiated wild-type C57Bl/6 mice with Sca1+ HSC transduced with the Lenti-hGPIIb-GFP constructs. Six months after transplantation we could detect 6% GFP positive platelets without a GFP signal in other cell lineages. Conclusion: In vitro and in vivo MK-specific transgene expression driven by the hGPIIb and mGPIIb promoters could be obtained after ex vivo genetic engineering of HSC by improved lentiviral vectors. Studies are ongoing to study whether this approach can induce phenotypic correction of GATA1 deficient mice by transplantation of ex vivo Lenti-hGPIIb-GATA1 transduced HSC.


Sign in / Sign up

Export Citation Format

Share Document