scholarly journals Carbon Anode Materials for Rechargeable Alkali Metal Ion Batteries and in-situ Characterization Techniques

2020 ◽  
Vol 8 ◽  
Author(s):  
Ruida Ding ◽  
Yalan Huang ◽  
Guangxing Li ◽  
Qin Liao ◽  
Tao Wei ◽  
...  

Lithium-ion batteries (LIBs), used for energy supply and storage equipment, have been widely applied in consumer electronics, electric vehicles, and energy storage systems. However, the urgent demand for high energy density batteries and the shortage of lithium resources is driving scientists to develop high-performance materials and find alternatives. Low-volume expansion carbon material is the ideal choice of anode material. However, the low specific capacity has gradually become the shortcoming for the development of LIBs and thus developing new carbon material with high specific capacity is urgently needed. In addition, developing alternatives of LIBs, such as sodium ion batteries and potassium-ion batteries, also puts forward demands for new types of carbon materials. As is well-known, the design of high-performance electrodes requires a deep understanding on the working mechanism and the structural evolution of active materials. On this issue, ex-situ techniques have been widely applied to investigate the electrode materials under special working conditions, and provide a lot of information. Unfortunately, these observed phenomena are difficult to reflect the reaction under real working conditions and some important short-lived intermediate products cannot be captured, leading to an incomplete understanding of the working mechanism. In-situ techniques can observe the changes of active materials in operando during the charge/discharge processes, providing the concrete process of solid electrolyte formation, ions intercalation mechanism, structural evolutions, etc. Herein, this review aims to provide an overview on the characters of carbon materials in alkali ion batteries and the role of in-situ techniques in developing carbon materials.

2021 ◽  
pp. 2143003
Author(s):  
Xiaomin Yuan ◽  
Bo Zhu ◽  
Jinkui Feng ◽  
Chengguo Wang ◽  
Xun Cai ◽  
...  

Owing to the insoluble organosulfur mechanism and stable cycling life, sulfurized polyacrylonitrile (SPAN) developed as a promising cathode material for high-energy potassium–sulfur batteries (KSBs). However, it is yet a major challenge to achieve fast catalytic kinetics and high reversible capacity in SPAN-based cathodes. Here, one-step electrospun SPAN nanofibers embedded with Fe[Formula: see text]Nb[Formula: see text]O metal oxide nanoparticles (FeNb@SPAN) have been successfully developed to construct sulfur electrodes with high electrochemical activity, high sulfur utilization, and high cycling stability. The as-prepared freestanding FeNb@SPAN composite cathode, which featuring interwoven nanofibers with Fe[Formula: see text]Nb[Formula: see text]O nanoparticles homogeneously implanted, possesses high storage space for volume expansion and suppresses polysulfide dissolution during potassiation/depotassiation. Benefiting from its unique structure and composition in electrode design, the FeNb@SPAN cathode is endowed with outstanding energy storage performances with a high initial specific capacity of 776 mAh [Formula: see text] g[Formula: see text] under 50 mA [Formula: see text] g[Formula: see text] and an excellent cycling capability of 201 mAh [Formula: see text] g[Formula: see text] after 80 charge/discharge processes. This work heralds a feasible strategy toward SPAN-based sulfur host materials in the structural design of next-generation high-performance cathode materials for KSBs and other metal–sulfur batteries.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenyan Du ◽  
Kangqi Shen ◽  
Yuruo Qi ◽  
Wei Gao ◽  
Mengli Tao ◽  
...  

AbstractRechargeable room temperature sodium–sulfur (RT Na–S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D “branch-leaf” biomimetic design proposed for high performance Na–S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive “branches” to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D “branch-leaf” conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co–S–Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared “branch-leaf” CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.


Author(s):  
Jian Zhao ◽  
He Cheng ◽  
Huanyu Li ◽  
Yan-Jie Wang ◽  
Qingyan Jiang ◽  
...  

Developing advanced negative and positive electrode materials for asymmetric supercapacitors (ASCs) as the electrochemical energy storage can enable the device to reach high energy/power densities resulting from the cooperative effect...


2018 ◽  
Vol 47 (19) ◽  
pp. 6722-6728 ◽  
Author(s):  
Subbukalai Vijayakumar ◽  
Sadayappan Nagamuthu ◽  
Kwang-Sun Ryu

MgCo2O4 nanosheets grown on Ni-foam exhibited a maximum specific capacity of 947 C g−1 at 2 A g−1.


2020 ◽  
Vol 49 (15) ◽  
pp. 4956-4966 ◽  
Author(s):  
Jingbo Li ◽  
Yu Liu ◽  
Wei Cao ◽  
Nan Chen

A rapid in situ method was employed to synthesize the β-Ni(OH)2@NF integrated electrode for a high performance ASC device.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruijuan Shi ◽  
Luojia Liu ◽  
Yong Lu ◽  
Chenchen Wang ◽  
Yixin Li ◽  
...  

AbstractCovalent organic frameworks with designable periodic skeletons and ordered nanopores have attracted increasing attention as promising cathode materials for rechargeable batteries. However, the reported cathodes are plagued by limited capacity and unsatisfying rate performance. Here we report a honeycomb-like nitrogen-rich covalent organic framework with multiple carbonyls. The sodium storage ability of pyrazines and carbonyls and the up-to twelve sodium-ion redox chemistry mechanism for each repetitive unit have been demonstrated by in/ex-situ Fourier transform infrared spectra and density functional theory calculations. The insoluble electrode exhibits a remarkably high specific capacity of 452.0 mAh g−1, excellent cycling stability (~96% capacity retention after 1000 cycles) and high rate performance (134.3 mAh g−1 at 10.0 A g−1). Furthermore, a pouch-type battery is assembled, displaying the gravimetric and volumetric energy density of 101.1 Wh kg−1cell and 78.5 Wh L−1cell, respectively, indicating potentially practical applications of conjugated polymers in rechargeable batteries.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jing Ning ◽  
Maoyang Xia ◽  
Dong Wang ◽  
Xin Feng ◽  
Hong Zhou ◽  
...  

Abstract Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like Ni3Si2/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni–Si particles, considerably catalyzing the growth of Ni–Si nanocrystals. By controlling the carbon source content, a Ni3Si2 single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g−1 (1193.28 F g−1) at 1 A g−1; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg−1 at 750 W kg−1, which can be attributed to the free-standing Ni3Si2/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 41179-41185 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Ricky Tjandra ◽  
Xingye Fan ◽  
Xingcheng Xiao ◽  
...  

Nanocomposites of Nb2O5 NCs in situ grown on CNTs are successfully developed with excellent rate capability, leading to the successful fabrication of asymmetric supercapacitors with high energy and power density and long-term cycling stability.


2000 ◽  
Vol 14 (25n27) ◽  
pp. 2688-2693 ◽  
Author(s):  
E. GIANNINI ◽  
E. BELLINGERI ◽  
F. MARTI ◽  
M. DHALLÉ ◽  
V. HONKIMÄKI ◽  
...  

In-situ and ex-situ high energy (80÷88 keV) X-Ray diffraction from a synchrotron radiation source were performed on multifilamentary Bi, Pb(2223)/Ag tapes using a transmission scattering geometry. Several thermo-mechanical procedures were compared, focusing mainly on the texture development of both Bi, Pb(2212) and Bi, Pb(2223) phases. The effect of the periodic pressing on the texture and on the critical current is elucidated. The texture development of the Bi, Pb(2212) phase prior to its transformation into Bi, Pb(2223) was directly observed in-situ at high temperature by using a dedicated high-energy X-ray compatible furnace and a high resolution Image Plate detector. A sharp increase of the Bi, Pb(2212) grain orientation along the [00l] direction was found to occur only above 750°C. Normal state transport measurements are in full agreement with the formation mechanism and with the texture development observed. A comparison of the results with the ones provided by in-situ neutron diffraction and standard low-energy XRD in a reflection geometry is presented.


Sign in / Sign up

Export Citation Format

Share Document