scholarly journals In vitro Evaluation of the Colistin-Carbapenem Combination in Clinical Isolates of A. baumannii Using the Checkerboard, Etest, and Time-Kill Curve Techniques

Author(s):  
Micheline A. H. Soudeiha ◽  
Elias A. Dahdouh ◽  
Eid Azar ◽  
Dolla K. Sarkis ◽  
Ziad Daoud
2015 ◽  
Author(s):  
Sunniva Foerster ◽  
Magnus Unemo ◽  
Lucy J Hathaway ◽  
Nicola Low ◽  
Christian L Althaus

Gonorrhea is a sexually transmitted infection caused by the Gram-negative bacteriumNeisseria gonorrhoeae. Resistance to first-line empirical monotherapy has emerged, so robust methods are needed to appropriately evaluate the activity of existing and novel antimicrobials against the bacterium. Pharmacodynamic functions, which describe the relationship between the concentration of antimicrobials and the bacterial net growth rate, provide more detailed information than the MIC only. In this study, a novel standardized in vitro time-kill curve assay was developed. The assay was validated using five World Health OrganizationN. gonorrhoeaereference strains and various concentrations of ciprofloxacin, and then the activity of nine antimicrobials with different target mechanisms were examined against a highly susceptible clinical wild type isolate (cultured in 1964). From the time-kill curves, the bacterial net growth rates at each antimicrobial concentration were estimated. Finally, a pharmacodynamic function was fitted to the data, resulting in four parameters that describe the pharmacodynamic properties of each antimicrobial. Ciprofloxacin resistance determinants shifted the pharmacodynamic MIC (zMIC) and attenuated the bactericidal effect at antimicrobial concentrations above the zMIC. Ciprofloxacin, spectinomycin and gentamicin had the strongest bactericidal effect during the first six hours of the assay. Only tetracycline and chloramphenicol showed a purely bacteriostatic effect. The pharmacodynamic functions differed between antimicrobials, showing that the effect of the drugs at concentrations below and above the MIC vary widely. In conclusion,N. gonorrhoeaetime-kill curve experiments analyzed with pharmacodynamic functions have potential for in vitro evaluation of new and existing antimicrobials and dosing strategies to treat gonorrhea.


2000 ◽  
Vol 44 (2) ◽  
pp. 458-461 ◽  
Author(s):  
Yoshiyuki Kawakami ◽  
Takayuki Akahane ◽  
Masaru Yamaguchi ◽  
Kozue Oana ◽  
Yuko Takahashi ◽  
...  

ABSTRACT The MICs of rabeprazole sodium (RPZ), a newly developed benzimidazole proton pump inhibitor (PPI), against 133 clinicalHelicobacter pylori strains revealed a higher degree of activity than the another two PPIs, lansoprazole and omeprazole. Time-kill curve assays of RPZ, when combined with amoxicillin, clarithromycin, or metronidazole, disclosed that synergistic effects were demonstrated in combination with each antibiotic examined. Moreover, no apparent antagonistic effect appeared among all of the strains tested.


1997 ◽  
Vol 41 (10) ◽  
pp. 2165-2172 ◽  
Author(s):  
F Biavasco ◽  
C Vignaroli ◽  
R Lupidi ◽  
E Manso ◽  
B Facinelli ◽  
...  

LY333328 is a semisynthetic N-alkyl derivative of LY264826, a naturally occurring structural analog of vancomycin. LY333328 was evaluated for its in vitro inhibitory and bactericidal activities in comparison with those of the two currently available glycopeptides (vancomycin and teicoplanin). Glycopeptide-susceptible test strains included a total of 311 isolates (most of clinical origin) from the genera Staphylococcus, Enterococcus, Streptococcus, Aerococcus, Gemella, Lactococcus, Listeria, Corynebacterium, and Clostridium. Test strains resistant or intermediate to vancomycin and/or teicoplanin included 56 clinical isolates of Enterococcus (of the VanA, VanB, and VanC phenotypes) and 32 clinical isolates of Staphylococcus (S. haemolyticus, S. epidermidis, and S. aureus), 31 strains of gram-positive genera outside the spectrum of activity of vancomycin (Leuconostoc, Pediococcus, Lactobacillus, and Erysipelothrix), and laboratory-derived organisms obtained after exposure of susceptible Staphylococcus isolates to teicoplanin (6 strains) or laboratory-derived organisms with resistance determinants received from VanA enterococci (2 Enterococcus and 25 Listeria transconjugants). LY333328 was highly active against staphylococci, enterococci, and listeriae (whether they were clinical or laboratory-derived strains) resistant to the currently available glycopeptides. In particular, the MICs of LY333328 did not vary substantially between teicoplanin-susceptible and teicoplanin-resistant staphylococci and between vancomycin-susceptible and vancomycin-resistant enterococci. LY333328 demonstrated fairly good inhibitory activity even against most strains of Leuconostoc, Pediococcus, and Erysipelothrix (MIC range, 1 to 8 microg/ml), whereas it proved less active (although much more active than vancomycin or teicoplanin) against Lactobacillus strains. In minimal bactericidal concentration (MBC) and time-kill studies, LY333328 demonstrated excellent bactericidal activity; enterococci, in particular, which were largely tolerant of vancomycin and teicoplanin, were uniformly killed by LY333328, with MBC-to-MIC ratios of 4 to 8 for most vancomycin-susceptible and vancomycin-resistant strains. In attempts to select for resistant clones, no survivors stably growing in the presence of 10 microg of LY333328 per ml were obtained from the Staphylococcus and Enterococcus test strains exposed to the drug.


1998 ◽  
Vol 42 (9) ◽  
pp. 2188-2192 ◽  
Author(s):  
Jeffrey R. Aeschlimann ◽  
Michael J. Rybak

ABSTRACT Quinupristin-dalfopristin (Q-D) is a new water-soluble, semisynthetic antibiotic that is derived from natural streptogramins and that is combined in a 30:70 ratio. A number of studies have described the pharmacodynamic properties of this drug, but most have investigated only staphylococci or streptococci. We evaluated the relationship between Q-D, quinupristin (Q), and/or dalfopristin (D) susceptibility parameters and antibacterial activities against 22 clinical isolates of vancomycin-resistant Enterococcus faecium (VREF) by using the concentration-time-kill-curve method and by measuring postantibiotic effects. Q-D, Q, and D MICs and minimum bactericidal concentrations (MBCs) ranged from 0.125 to 1 and 0.25 to 64, 8 to 512 and >512, and 2 to 8 and 8 to 512 μg/ml, respectively. There were no significant relationships between susceptibilities to the individual components and the susceptibilities to the Q-D combination product. In the time-kill-curves studies, Q-D at a concentration of 6 μg/ml was at least bacteriostatic against all VREF tested. There was increased activity against more susceptible isolates when the isolates were grouped either by Q-D MBCs or by Q MICs. By multivariate regression analyses, the percent change in the inoculum from that at the baseline was significantly correlated with the Q MIC (R = 0.74; P = 0.008) and the Q-D concentration-to-MBC ratio (R = 0.58;P = 0.02) and was inversely correlated with the Q-D MBC-to-MIC ratio (R = 0.68; P = 0.003). A strong correlation existed between the killing rate and the Q-D concentration-to-MBC ratio (R = 0.99;P < 0.0001). Time to 99.9% killing was best correlated with the Q-D MBC (R = 0.96;P < 0.0001). The postantibiotic effect ranged from 0.2 to 3.2 h and was highly correlated with the Q-D concentration-to-MBC ratio (R = 0.96;P < 0.0001) and was less highly correlated with the Q MIC (R = 0.42; P = 0.04). Further study of these relationships with in vitro or in vivo infection models that simulate Q-D pharmacokinetics should further define the utility of these pharmacodynamic parameters in the prediction of Q-D activity for the treatment of VREF infections in humans.


2019 ◽  
Vol 74 (12) ◽  
pp. 3521-3529 ◽  
Author(s):  
Sunniva Foerster ◽  
George Drusano ◽  
Daniel Golparian ◽  
Michael Neely ◽  
Laura J V Piddock ◽  
...  

Abstract Objectives Resistance in Neisseria gonorrhoeae to all gonorrhoea therapeutic antimicrobials has emerged. Novel therapeutic antimicrobials are imperative and the first-in-class spiropyrimidinetrione zoliflodacin appears promising. Zoliflodacin could be introduced in dual antimicrobial therapies to prevent the emergence and/or spread of resistance. We investigated the in vitro activity of and selection of resistance to zoliflodacin alone and in combination with six gonorrhoea therapeutic antimicrobials against N. gonorrhoeae. Methods The international gonococcal reference strains WHO F (WT) and WHO O, WHO V and WHO X (strains with different AMR profiles) were examined. Zoliflodacin was evaluated alone or combined with ceftriaxone, cefixime, spectinomycin, gentamicin, tetracycline, cethromycin or sitafloxacin in chequerboard assays, time–kill curve analysis and selection-of-resistance studies. Results Zoliflodacin alone or in combination with all six antimicrobials showed rapid growth inhibition against all examined strains. The time–kill curve analysis indicated that tetracycline or cethromycin combined with zoliflodacin can significantly decrease the zoliflodacin kill rate in vitro. The frequency of selected zoliflodacin-resistance mutations was low when evaluated as a single agent and further reduced for all antimicrobial combinations. All resistant mutants contained the GyrB mutations D429N, K450T or K450N, resulting in zoliflodacin MICs of 0.5–4 mg/L. Conclusions Zoliflodacin, alone or in combination with sexually transmitted infection therapeutic antimicrobials, rapidly kills gonococci with infrequent resistance emergence. Zoliflodacin remains promising for gonorrhoea oral monotherapy and as part of dual antimicrobial therapy with low resistance emergence potential. A Phase III trial evaluating efficacy and safety of zoliflodacin for uncomplicated gonorrhoea treatment is planned in 2019.


2009 ◽  
Vol 53 (5) ◽  
pp. 2133-2135 ◽  
Author(s):  
Maria Souli ◽  
Panagiota Danai Rekatsina ◽  
Zoi Chryssouli ◽  
Irene Galani ◽  
Helen Giamarellou ◽  
...  

ABSTRACT Using time-kill methodology, we investigated the interactions of an imipenem-colistin combination against 42 genetically distinct Klebsiella pneumoniae clinical isolates carrying a bla VIM-1-type gene. Irrespective of the imipenem MIC, the combination was synergistic (50%) or indifferent (50%) against colistin-susceptible strains, while it was antagonistic (55.6%) and rarely synergistic (11%) against non-colistin-susceptible strains (with synergy being observed only against strains with colistin MICs of 3 to 4 μg/ml). The combination showed improved bactericidal activity against isolates susceptible either to both agents or to colistin.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Arunkumar Karunanidhi ◽  
Renjan Thomas ◽  
Alex van Belkum ◽  
Vasanthakumari Neela

Thein vitroantibacterial and antibiofilm activity of chlorogenic acid against clinical isolates ofStenotrophomonas maltophiliawas investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinicalS. maltophiliaisolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h.In vitroantibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085<0.397A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promisingin vitroantibacterial and antibiofilm activities againstS. maltophilia.


2001 ◽  
Vol 45 (3) ◽  
pp. 927-931 ◽  
Author(s):  
Alexander A. Firsov ◽  
Irene Y. Lubenko ◽  
Yury A. Portnoy ◽  
Stephen H. Zinner ◽  
Sergey N. Vostrov

ABSTRACT Most integral endpoints of the antimicrobial effect are determined over an arbitrarily chosen time period, such as the dosing interval (τ), regardless of the actual effect duration. Unlike the τ-related endpoints, the intensity of the antimicrobial effect (I E) does consider its duration—from time zero to the time when bacterial counts on the regrowth curve achieve the same maximal numbers as in the absence of the antimicrobial. To examine the possible impact of this fundamental difference on the relationships of the antimicrobial effect to the ratio of the area under the concentration-time curve (AUC) to the MIC, a clinical isolate ofStaphylococcus aureus was exposed to simulated gemifloxacin pharmacokinetics over a 40-fold range of AUC/MIC ratios, from 11 to 466 h. In each run, I E and four τ-related endpoints, including the area under the time-kill curve (AUBC), the area above the curve (AAC), the area between the control growth and time-kill curves (ABBC), and the ABBC related to the area under the control growth curve (AUGC), were calculated for τ = 24 h. Unlike the I E, which displayed pseudolinear relationships with the AUC/MIC ratio; each τ-related endpoint showed a distinct saturation at potentially therapeutic AUC/MIC ratios (116 to 466 h) when the antimicrobial effect persisted longer than τ. This saturation results from the underestimation of the true effect and may be eliminated if ABBC, AAC, and AUBC (but not AUGC) are modified and determined in the same manner as the I E to consider the actual effect duration. These data suggest a marginal value of the τ-related endpoints as indices of the total antimicrobial effect. Since all of them respond to AUC/MIC ratio changes less than theI E, the latter is preferable in comparative pharmacodynamic studies.


Sign in / Sign up

Export Citation Format

Share Document