scholarly journals In VitroAntibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates ofStenotrophomonas maltophiliaincluding the Trimethoprim/Sulfamethoxazole Resistant Strain

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Arunkumar Karunanidhi ◽  
Renjan Thomas ◽  
Alex van Belkum ◽  
Vasanthakumari Neela

Thein vitroantibacterial and antibiofilm activity of chlorogenic acid against clinical isolates ofStenotrophomonas maltophiliawas investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinicalS. maltophiliaisolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h.In vitroantibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085<0.397A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promisingin vitroantibacterial and antibiofilm activities againstS. maltophilia.

2014 ◽  
Vol 58 (8) ◽  
pp. 4353-4361 ◽  
Author(s):  
Carlos J. Sanchez ◽  
Kevin S. Akers ◽  
Desiree R. Romano ◽  
Ronald L. Woodbury ◽  
Sharanda K. Hardy ◽  
...  

ABSTRACTWithin wounds, microorganisms predominantly exist as biofilms. Biofilms are associated with chronic infections and represent a tremendous clinical challenge. As antibiotics are often ineffective against biofilms, use of dispersal agents as adjunctive, topical therapies for the treatment of wound infections involving biofilms has gained interest. We evaluatedin vitrothe dispersive activity ofd-amino acids (d-AAs) on biofilms from clinical wound isolates ofStaphylococcus aureusandPseudomonas aeruginosa; moreover, we determined whether combinations ofd-AAs and antibiotics (clindamycin, cefazolin, oxacillin, rifampin, and vancomycin forS. aureusand amikacin, colistin, ciprofloxacin, imipenem, and ceftazidime forP. aeruginosa) enhance activity against biofilms.d-Met,d-Phe, andd-Trp at concentrations of ≥5 mM effectively dispersed preformed biofilms ofS. aureusandP. aeruginosaclinical isolates, an effect that was enhanced when they were combined as an equimolar mixture (d-Met/d-Phe/d-Trp). When combined withd-AAs, the activity of rifampin was significantly enhanced against biofilms of clinical isolates ofS. aureus, as indicated by a reduction in the minimum biofilm inhibitory concentration (MBIC) (from 32 to 8 μg/ml) and a >2-log reduction of viable biofilm bacteria compared to treatment with antibiotic alone. The addition ofd-AAs was also observed to enhance the activity of colistin and ciprofloxacin against biofilms ofP. aeruginosa, reducing the observed MBIC and the number of viable bacteria by >2 logs and 1 log at 64 and 32 μg/ml in contrast to antibiotics alone. These findings indicate that the biofilm dispersal activity ofd-AAs may represent an effective strategy, in combination with antimicrobials, to release bacteria from biofilms, subsequently enhancing antimicrobial activity.


Author(s):  
HEMANGI TRIVEDI ◽  
PRASHANT K. PURANIK

Objective: To investigate the in vitro antibacterial activity of a naturally occurring polyphenol chlorogenic acid (CGA) and compares it with formulated chlorogenic acid phytovesicles against 4 different bacterial strains; two gram positive [Staphylococcous aureus and Bacillus subtilis] and two gram negative strains [Klebsiella pneumonia and Escherichia coli]. Methods: CGA phytovesicles were developed and optimized using central composite design to improvise CGA’s physicochemical properties. Bactericidal activity was evaluated using agar diffusion, minimum inhibitory concentration (MIC) and time kill assay. The effect of pH and temperature on the antimicrobial activity was determined. Results: The optimized CGA phytovesicles showed entrapment of 96.89% with 30 times better lipophilic solubility than the plain drug. The inhibition zone sizes for CGA phytovesicle ranged from 17-25 mm as compared to 15-20 mm of plain CGA while the MIC values ranged 200-250 µg/ml as compared to 500-550 µg/ml of plain CGA. CGA phytovesicles exhibited a strong bactericidal effect at MIC with a log reduction in the range of 0.90-2.04 in Colony forming units (CFUs) at 24h for different strains as compared to 1.38-2.17 of plain CGA. Furthermore, the antibacterial effect was found to augment with increasing temperature but decreased with alkaline pH. Conclusion: Results strongly supports the hypothesis of potential use of CGA phytovesicles as a mode of drug delivery for its antibacterial use against different resistant bacteria.


2012 ◽  
Vol 56 (6) ◽  
pp. 3080-3085 ◽  
Author(s):  
Michael Hornsey ◽  
Christopher Longshaw ◽  
Lynette Phee ◽  
David W. Wareham

ABSTRACTThe treatment of Gram-negative infections is increasingly compromised by the spread of resistance. With few agents currently in development, clinicians are now considering the use of unorthodox combination therapies for multidrug-resistant strains. Here we assessed thein vitroactivity of the novel lipoglycopeptide telavancin (TLV) when combined with colistin (COL) versus 13 Gram-negative type strains and 66 clinical isolates. Marked synergy was observed in either checkerboard (fractional inhibitory concentration index [FICI], <0.5; susceptibility breakpoint index [SBPI], >2) or time-kill assays (>2-log reduction in viable counts compared with starting inocula at 24 h) versus the majority of COL-susceptible enterobacteria,Stenotrophomonas maltophilia, andAcinetobacter baumanniiisolates, but only limited effects were seen againstPseudomonas aeruginosaor strains with COL resistance. Using an Etest/agar dilution method, the activity of TLV was potentiated by relatively low concentrations of COL (0.25 to 0.75 μg/ml), reducing the MIC of TLV from >32 μg/ml to ≤1 μg/ml for 35% of the clinical isolates. This provides further evidence that glycopeptide-polymyxin combinations may be a useful therapeutic option in the treatment of Gram-negative infections.


1997 ◽  
Vol 41 (10) ◽  
pp. 2165-2172 ◽  
Author(s):  
F Biavasco ◽  
C Vignaroli ◽  
R Lupidi ◽  
E Manso ◽  
B Facinelli ◽  
...  

LY333328 is a semisynthetic N-alkyl derivative of LY264826, a naturally occurring structural analog of vancomycin. LY333328 was evaluated for its in vitro inhibitory and bactericidal activities in comparison with those of the two currently available glycopeptides (vancomycin and teicoplanin). Glycopeptide-susceptible test strains included a total of 311 isolates (most of clinical origin) from the genera Staphylococcus, Enterococcus, Streptococcus, Aerococcus, Gemella, Lactococcus, Listeria, Corynebacterium, and Clostridium. Test strains resistant or intermediate to vancomycin and/or teicoplanin included 56 clinical isolates of Enterococcus (of the VanA, VanB, and VanC phenotypes) and 32 clinical isolates of Staphylococcus (S. haemolyticus, S. epidermidis, and S. aureus), 31 strains of gram-positive genera outside the spectrum of activity of vancomycin (Leuconostoc, Pediococcus, Lactobacillus, and Erysipelothrix), and laboratory-derived organisms obtained after exposure of susceptible Staphylococcus isolates to teicoplanin (6 strains) or laboratory-derived organisms with resistance determinants received from VanA enterococci (2 Enterococcus and 25 Listeria transconjugants). LY333328 was highly active against staphylococci, enterococci, and listeriae (whether they were clinical or laboratory-derived strains) resistant to the currently available glycopeptides. In particular, the MICs of LY333328 did not vary substantially between teicoplanin-susceptible and teicoplanin-resistant staphylococci and between vancomycin-susceptible and vancomycin-resistant enterococci. LY333328 demonstrated fairly good inhibitory activity even against most strains of Leuconostoc, Pediococcus, and Erysipelothrix (MIC range, 1 to 8 microg/ml), whereas it proved less active (although much more active than vancomycin or teicoplanin) against Lactobacillus strains. In minimal bactericidal concentration (MBC) and time-kill studies, LY333328 demonstrated excellent bactericidal activity; enterococci, in particular, which were largely tolerant of vancomycin and teicoplanin, were uniformly killed by LY333328, with MBC-to-MIC ratios of 4 to 8 for most vancomycin-susceptible and vancomycin-resistant strains. In attempts to select for resistant clones, no survivors stably growing in the presence of 10 microg of LY333328 per ml were obtained from the Staphylococcus and Enterococcus test strains exposed to the drug.


2009 ◽  
Vol 53 (5) ◽  
pp. 2133-2135 ◽  
Author(s):  
Maria Souli ◽  
Panagiota Danai Rekatsina ◽  
Zoi Chryssouli ◽  
Irene Galani ◽  
Helen Giamarellou ◽  
...  

ABSTRACT Using time-kill methodology, we investigated the interactions of an imipenem-colistin combination against 42 genetically distinct Klebsiella pneumoniae clinical isolates carrying a bla VIM-1-type gene. Irrespective of the imipenem MIC, the combination was synergistic (50%) or indifferent (50%) against colistin-susceptible strains, while it was antagonistic (55.6%) and rarely synergistic (11%) against non-colistin-susceptible strains (with synergy being observed only against strains with colistin MICs of 3 to 4 μg/ml). The combination showed improved bactericidal activity against isolates susceptible either to both agents or to colistin.


2020 ◽  
Vol 75 (7) ◽  
pp. 1874-1878 ◽  
Author(s):  
Gabriel T Cuba ◽  
Gerlan Rocha-Santos ◽  
Rodrigo Cayô ◽  
Ana Paula Streling ◽  
Carolina S Nodari ◽  
...  

Abstract Objectives Carbapenem-resistant Pseudomonas aeruginosa (CR-PSA) imposes great limitations on empirical therapeutic choices, which are further complicated by metallo-β-lactamase production. This study evaluated in vitro antimicrobial synergy of ceftolozane/tazobactam in combination with aztreonam and fosfomycin against MDR PSA. Methods MICs were determined by broth microdilution and gradient strips. The effect of ceftolozane/tazobactam+aztreonam and ceftolozane/tazobactam+fosfomycin combinations were tested against 27 MDR PSA isolates carrying blaSPM-1 (n = 13), blaIMP (n = 4), blaVIM (n = 3), blaGES-1 (n = 2) and blaCTX-M-like (n = 2), and 3 isolates with no acquired β-lactamase production detected by gradient diffusion strip crossing (GDSC). Six genetically unrelated SPM-1-producing isolates were also evaluated by time–kill analysis (TKA). Results All CR-PSA isolates harbouring blaSPM-1, blaGES-1 and blaIMP-1 were categorized as resistant to ceftolozane/tazobactam, meropenem and fosfomycin, with 70% being susceptible to aztreonam. Synergism for ceftolozane/tazobactam+fosfomycin and ceftolozane/tazobactam+aztreonam combinations was observed for 88.9% (24/27) and 18.5% (5/27) of the isolates by GDSC, respectively. A 3- to 9-fold reduction in ceftolozane/tazobactam MICs was observed, depending on the combination. Ceftolozane/tazobactam+fosfomycin was synergistic by TKA against one of six SPM-1-producing isolates, with additional non-synergistic bacterial density reduction for another isolate. Aztreonam peak concentrations alone demonstrated a ≥3 log10 cfu/mL reduction against all six isolates, but all strains were within the susceptible range for the drug. No antagonism was observed. Conclusions In the context of increasing CR-PSA and the genetic diversity of resistance mechanisms, new combinations and stewardship strategies may need to be explored in the face of increasingly difficult to treat pathogens.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 696 ◽  
Author(s):  
Jacinda C. Abdul-Mutakabbir ◽  
Razieh Kebriaei ◽  
Kyle C. Stamper ◽  
Zain Sheikh ◽  
Philip T. Maassen ◽  
...  

The most efficacious antimicrobial therapy to aid in the successful elimination of resistant S. aureus infections is unknown. In this study, we evaluated varying phenotypes of S. aureus against dalbavancin (DAL), vancomycin (VAN), and daptomycin (DAP) alone and in combination with cefazolin (CFZ). The objective of this study was to observe whether there was a therapeutic improvement in adding a beta-lactam to a glycopeptide, lipopeptide, or a lipoglycopeptide. We completed a series of in vitro tests including minimum inhibitory concentration testing (MIC) of the antimicrobials in combination, time-kill analysis (TKA), and a 168 h (7-day) one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model on two daptomycin non-susceptible (DNS), vancomycin intermediate S. aureus strains (VISA), D712 and 6913. Results from our MIC testing demonstrated a minimum 2-fold and a maximum 32-fold reduction in MIC values for DAL, VAN, and DAP in combination with CFZ, in contrast to either agent used alone. The TKAs completed on four strains paralleled the enhanced activity demonstrated via the combination MICs. In the one-compartment PK/PD models, the combination of DAP plus CFZ or VAN plus CFZ resulted in a significant (p < 0.001) improvement in bactericidal activity and overall reduction in CFU/ml over the 7-day period. While the addition of CFZ to DAL improved time to bactericidal activity, DAL alone demonstrated equal and more sustained overall activity compared to all other treatments. The use of DAL alone, with or without CFZ and the combinations of VAN or DAP with CFZ appear to result in increased bactericidal activity against various recalcitrant S. aureus phenotypes.


2012 ◽  
Vol 57 (3) ◽  
pp. 1275-1282 ◽  
Author(s):  
Francesca Bugli ◽  
Brunella Posteraro ◽  
Massimiliano Papi ◽  
Riccardo Torelli ◽  
Alessandro Maiorana ◽  
...  

ABSTRACTAspergillus fumigatusbiofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treatAspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study,in vitrointeractions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, againstA. fumigatusbiofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that whenA. fumigatusbiofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed inA. fumigatusbiofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination of AlgL and a polyene antifungal may prove to be a new therapeutic strategy for invasive aspergillosis, while reinforcing the EPS as a valuable antibiofilm drug target.


2008 ◽  
Vol 57 (12) ◽  
pp. 1514-1517 ◽  
Author(s):  
N. Sivagurunathan ◽  
S. Krishnan ◽  
J. Venkat Rao ◽  
Anantha Naik Nagappa ◽  
V. M. Subrahmanyam ◽  
...  

Chequerboard and time–kill methods were used to compare the in vitro efficacies of the combinations gatifloxacin (GAT) with cefoperazone (CFP) and GAT with cefoperazone–sulbactam (CFP-SUL) against 58 clinical isolates of Pseudomonas aeruginosa. The combinations GAT+CFP and GAT+CFP-SUL were shown to be synergistic for 36.2 and 58.6 % of isolates tested, respectively, using the chequerboard method. Time–kill studies with 11 strains showed synergy in 54.5 % for the GAT+CFP combination and 72.7 % for the GAT+CFP-SUL combination. The agreement between these two methods was found to be 72–81 %. There was a significant difference in synergy between the two combinations tested (P=0.011).


2006 ◽  
Vol 50 (3) ◽  
pp. 1096-1099 ◽  
Author(s):  
Hua Quan ◽  
Ying-Ying Cao ◽  
Zheng Xu ◽  
Jing-Xia Zhao ◽  
Ping-Hui Gao ◽  
...  

ABSTRACT In vitro interaction of fluconazole and berberine chloride was investigated against 40 fluconazole-resistant clinical isolates of Candida albicans. Synergism in fungistatic activity was found with the checkerboard microdilution assay. The findings of agar diffusion tests and time-kill curves confirmed the synergistic interaction, but no antagonistic action was observed.


Sign in / Sign up

Export Citation Format

Share Document