scholarly journals In Vitro Activity Comparison of Ceftazidime–Avibactam and Aztreonam–Avibactam Against Bloodstream Infections With Carbapenem-Resistant Organisms in China

Author(s):  
Wei Yu ◽  
Luying Xiong ◽  
Qixia Luo ◽  
Yunbo Chen ◽  
Jinru Ji ◽  
...  

ObjectivesThe aim of this work was to investigate the activity of ceftazidime–avibactam (CZA) and aztreonam–avibactam (AZA) against bloodstream infections caused by carbapenem-resistant organisms (CROs).MethodsNon-duplicate CROs, including 56 carbapenem-resistant Escherichia coli (CR-Eco), 318 carbapenem-resistant Klebsiella pneumoniae (CR-Kpn), and 65 carbapenem-resistant Pseudomonas aeruginosa (CR-Pae), were collected using the Blood Bacterial Resistant Investigation Collaborative System (BRICS) program in China. The minimum inhibitory concentrations (MICs) of 24 antibiotics were tested. Carbapenemase genes were amplified for CZA-resistant CROs by PCR. The MICs of CZA and AZA were further determined with avibactam at 8 and 16 mg/L, respectively.ResultsThe resistance rate of polymyxin B against CROs was less than 5%. Only one CR-Kpn was resistant to tigecycline. The resistance rates of CZA against CR-Eco, CR-Kpn, and CR-Pae were 75.0%, 12.6%, and 18.5%, respectively. The MIC90 values of AZA against CR-Eco, CR-Kpn, and CR-Pae were 2/4, 1/4, and 64/4 mg/L, respectively. Among the CZA-resistant CROs, 42 (100%) CR-Eco, 24 (60%) CR-Kpn, and 1 (8.3%) CR-Pae isolates harbored metallo-β-lactamase genes. The increase of avibactam concentration enhanced the susceptibility of CZA and AZA against CROs, especially for CR-Eco and CR-Kpn.ConclusionsThe in vitro activity of AZA was superior to that of CZA against CR-Eco and CR-Kpn, whereas CZA showed better effect against CR-Pae.

Author(s):  
Gizem İnce ◽  
Hasan Cenk Mirza ◽  
Aylin Üsküdar Güçlü ◽  
Hale Gümüş ◽  
Çiğdem Erol ◽  
...  

Abstract Objectives To compare the in vitro activity of plazomicin and two older aminoglycosides (gentamicin and amikacin) against 180 isolates of Escherichia coli and Klebsiella pneumoniae, including subsets of 60 non-ESBL-producing, 60 ESBL-producing and 60 carbapenem-resistant (46 carrying blaOXA-48, 11 carrying blaNDM and 3 carrying blaOXA-48 and blaNDM) strains. Methods MICs of plazomicin, gentamicin and amikacin were determined by a gradient diffusion method. Gentamicin and amikacin MICs were interpreted according to CLSI criteria and EUCAST breakpoint tables. Plazomicin MICs were interpreted using FDA-defined breakpoints. Results All non-ESBL-producing and ESBL-producing isolates were susceptible to plazomicin. The plazomicin susceptibility rate (71.7%) in carbapenem-resistant isolates was significantly higher than those observed for gentamicin (45%) and amikacin (56.7% and 51.7% according to CLSI and EUCAST breakpoints, respectively). Gentamicin, amikacin and plazomicin susceptibility rates (35.6% for gentamicin; 44.4% and 37.8% for amikacin according to CLSI and EUCAST breakpoints, respectively; 64.4% for plazomicin) in carbapenem-resistant K. pneumoniae were significantly lower than those observed for carbapenem-resistant E. coli isolates (73.3% for gentamicin; 93.3% for amikacin and plazomicin). Gentamicin, amikacin and plazomicin susceptibility rates for blaNDM-positive isolates were lower than those observed for blaOXA-48-positive isolates, but differences were not statistically significant. Among the isolates that were non-susceptible to both gentamicin and amikacin, the plazomicin susceptibility rate was less than 30%. Conclusions Although plazomicin showed excellent in vitro activity against carbapenem-susceptible isolates, the plazomicin resistance rate increased to 35.6% among carbapenem-resistant K. pneumoniae and further increased to 45.5% among blaNDM-positive isolates.


2021 ◽  
Vol 14 (4) ◽  
pp. 370
Author(s):  
Le Phuong Nguyen ◽  
Chul Soon Park ◽  
Naina Adren Pinto ◽  
Hyunsook Lee ◽  
Hyun Soo Seo ◽  
...  

The siderophore–antibiotic conjugate LCB10-0200 (a.k.a. GT-1) has been developed to combat multidrug-resistant Gram-negative bacteria. In this study, the in vitro activity of LCB10-0200 and LCB10-0200/avibactam (AVI) has been investigated against carbapenem-resistant Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Minimal inhibitory concentrations (MICs) of LCB10-0200, LCB10-0200/AVI, aztreonam, aztreonam/AVI, ceftazidime, ceftazidime/AVI, and meropenem were measured using the agar dilution method. Whole genome sequencing was performed using Illumina and the resistome was analyzed. LCB10-0200 displayed stronger activity than the comparator drugs in meropenem-resistant E. coli and K. pneumoniae, and the addition of AVI enhanced the LCB10-0200 activity to MIC ≤ 0.12 mg/L for 90.5% of isolates. In contrast, whereas LCB10-0200 alone showed potent activity against meropenem-resistant A. baumannii and P. aeruginosa at MIC ≤ 4 mg/L for 84.3% of isolates, the combination with AVI did not improve its activity. LCB10-0200/AVI was active against CTX-M-, SHV-, CMY-, and KPC- producing E. coli and K. pneumoniae, while LCB10-0200 alone was active against ADC-, OXA-, and VIM- producing A. baumannii and P. aeruginosa. Both LCB10-0200 and LCB10-0200/AVI displayed low activity against IMP- and NDM- producing strains. LCB10-0200 alone exhibited strong activity against selected strains. The addition of AVI significantly increased LCB10-0200 activity against carbapenem-resistant E. coli, K. pneumoniae.


2010 ◽  
Vol 54 (6) ◽  
pp. 2732-2734 ◽  
Author(s):  
Carl Urban ◽  
Noriel Mariano ◽  
James J. Rahal

ABSTRACT In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin were assessed against 20 carbapenem-resistant clinical isolates with different mechanisms of carbapenem resistance. Bactericidal activity was achieved in 90% of all bacteria assayed using combinations of polymyxin B, doripenem, and rifampin against five each of the carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli isolates studied. Combinations with these antibacterials may provide a strategy for treatment of patients infected with such organisms.


Author(s):  
Marta Hernández-García ◽  
María García-Castillo ◽  
Patricia Ruiz-Garbajosa ◽  
Germán Bou ◽  
María Siller-Ruiz ◽  
...  

Novel β-lactam-β-lactamase inhibitor combinations currently approved for clinical use are poorly active against metallo-β-lactamase (MBL)-producing strains. We evaluated the in vitro activity of cefepime-taniborbactam (FTB, formerly cefepime/VNRX-5133) and comparator agents against carbapenemase-producing Enterobacterales (n=247) and carbapenem-resistant Pseudomonas spp. (n=170) clinical isolates prospectively collected from different clinical origin in patients admitted to 8 Spanish hospitals. FTB was the most active agent in both Enterobacterales (97.6% MIC FTB ≤8/4 mg/L) and Pseudomonas populations (67.1% MIC FTB ≤8/4 mg/L). MIC FTB was >8 mg/L in 6/247 (2.4%) Enterobacterales isolates (3 KPC- Klebsiella pneumoniae , 1 VIM- Enterobacter cloacae , 1 IMP- E. cloacae and 1 NDM- Escherichia coli ) and in 56/170 (32.9%) Pseudomonas spp., 19 of them carbapenemase producers (15 VIM, 2 GES, 1 GES+VIM, 1 GES+KPC). Against the Enterobacterales isolates with meropenem MIC>2 mg/L (138/247), FTB was the most active agent against both serine-β-lactamases (107/138) and MBL producers (31/138) (97.2% and 93.5% MIC FTB ≤8/4 mg/L, respectively) whereas the activity of comparators was reduced, particularly against the MBL producers (ceftazidime-avibactam, 94.4% and 12.9%; meropenem-vaborbactam, 85.0% and 64.5%; imipenem-relebactam, 76.6% and 9.7%; ceftolozane-tazobactam, 1.9% and 0%; piperacillin-tazobactam, 0% and 0%, respectively). Among the meropenem-resistant Pseudomonas spp. isolates (163/170, MIC>2 mg/L), activity of FTB against serine-β-lactamase (35/163) and MBL producers (43/163) was 88.6% and 65.1%, respectively, whereas the susceptibility of comparators was: ceftazidime-avibactam, 88.5% and 16.0%; meropenem-vaborbactam, 8.5% and 7.0%; imipenem-relebactam, 2.9% and 2.3%; ceftolozane-tazobactam, 0% and 2.3%; and piperacillin-tazobactam, 0% and 0%, respectively. Microbiological results suggest FTB as a potential therapeutic option in patients infected with carbapenemase-producing Enterobacterales and carbapenem-resistant Pseudomonas isolates, including MBL producers.


Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 75 ◽  
Author(s):  
Wadha Alfouzan ◽  
Rita Dhar ◽  
David Nicolau

Limited data are available on susceptibilities of these organisms to some of the recently made accessible antimicrobial agents. The in vitro activities of newer antibiotics, such as, ceftolozane/tazobactam (C/T) and ceftazidime/avibactam (CZA) along with some “older” antibiotics, for example fosfomycin (FOS) and colistin (CL) were determined against selected strains (resistant to ≥ 3 antimicrobial agents) of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Minimum inhibitory concentrations (MIC) were determined by Clinical and Laboratory Standards Institute microbroth dilution. 133 isolates: 46 E. coli, 39 K. pneumoniae, and 48 P. aeruginosa were tested. Results showed that E. coli isolates with MIC50/90, 0.5/1 μ g / mL for CL; 4/32 μ g / mL for FOS; 0.25/32 μ g / mL for C/T; 0.25/8 μ g / mL for CZA, exhibited susceptibility rates of 95.7%, 97.8%, 76.1%, and 89.1%, respectively. On the other hand, K. pneumoniae strains with MIC50/90, 0.5/1 μ g / mL for CL; 256/512 μ g / mL for FOS; 2/128 μ g / mL for C/T; 0.5/128 μ g / mL for CZA showed susceptibility rates of 92.3%, 7.7%, 51.3%, and 64.1%, respectively. P. aeruginosa isolates with MIC50/90, 1/1 μ g / mL for CL; 128/128 μ g / mL for C/T; 32/64 μ g / mL for CZA presented susceptibility rates of 97.9%, 33.3%, and 39.6%, respectively. Higher MICs were demonstrated against most of the antibiotics. However, CL retained efficacy at low MICs against most of the isolates tested.


1998 ◽  
Vol 42 (5) ◽  
pp. 1015-1021 ◽  
Author(s):  
Teruo Kirikae ◽  
Fumiko Kirikae ◽  
Shinji Saito ◽  
Kaoru Tominaga ◽  
Hirohi Tamura ◽  
...  

ABSTRACT The supernatants taken from Pseudomonas aeruginosa andEscherichia coli cultures in human sera or chemically defined M9 medium in the presence of ceftazidime (CAZ) contained high levels of endotoxin, while those taken from the same cultures in the presence of imipenem (IPM) yielded a very low level of endotoxin. The biological activities of endotoxin in the supernatants were compared with those of phenol water-extracted lipopolysaccharide (LPS). The endotoxin released from the organisms as a result of CAZ treatment (CAZ-released endotoxin) contained a large amount of protein. The protein, however, lacked endotoxic activity, since the endotoxin did not show any in vivo toxic effects in LPS-hyporesponsive C3H/HeJ mice sensitized with d-(+)-galactosamine (GalN) or any activation of C3H/HeJ mouse macrophages in vitro. The activities of CAZ- and IPM-released endotoxin (as assessed by a chromogenicLimulus test) were fundamentally the same as those ofP. aeruginosa LPS, since their regression lines were parallel. The CAZ-released endotoxin was similar to purified LPS with respect to the following biological activities in LPS-responsive C3H/HeN mice and LPS-hyporesponsive C3H/HeJ mice: lethal toxicity in GalN-sensitized mice, in vitro induction of tumor necrosis factor- and NO production by macrophages, and mitogen-activated protein kinase activation in macrophages. The macrophage activation by CAZ-released endotoxin as well as LPS was mainly dependent on the presence of serum factor and CD14 antigen. Polymyxin B blocked the activity. These findings indicate that the endotoxic activity of CAZ-released endotoxin is due primarily to LPS (lipid A).


2009 ◽  
Vol 53 (11) ◽  
pp. 4762-4771 ◽  
Author(s):  
Francis F. Arhin ◽  
Deborah C. Draghi ◽  
Chris M. Pillar ◽  
Thomas R. Parr ◽  
Gregory Moeck ◽  
...  

ABSTRACT Oritavancin activity was tested against 15,764 gram-positive isolates collected from 246 hospital centers in 25 countries between 2005 and 2008. Organisms were Staphylococcus aureus (n = 9,075), coagulase-negative staphylococci (n = 1,664), Enterococcus faecalis (n = 1,738), Enterococcus faecium (n = 819), Streptococcus pyogenes (n = 959), Streptococcus agalactiae (n = 415), group C, G, and F streptococci (n = 84), and Streptococcus pneumoniae (n = 1,010). Among the evaluated staphylococci, 56.7% were resistant to oxacillin. The vancomycin resistance rate among enterococci was 21.2%. Penicillin-resistant and -intermediate rates were 14.7% and 21.4%, respectively, among S. pneumoniae isolates. Among nonpneumococcal streptococci, 18.5% were nonsusceptible to erythromycin. Oritavancin showed substantial in vitro activity against all organisms tested, regardless of resistance profile. The maximum oritavancin MIC against all staphylococci tested (n = 10,739) was 4 μg/ml; the MIC90 against S. aureus was 0.12 μg/ml. Against E. faecalis and E. faecium, oritavancin MIC90s were 0.06 and 0.12, respectively. Oritavancin was active against glycopeptide-resistant enterococci, including VanA strains (n = 486), with MIC90s of 0.25 and 1 μg/ml against VanA E. faecium and E. faecalis, respectively. Oritavancin showed potent activity against streptococci (n = 2,468); MIC90s for the different streptococcal species were between 0.008 and 1 μg/ml. These data are consistent with previous studies with respect to resistance rates of gram-positive isolates and demonstrate the spectrum and in vitro activity of oritavancin against a wide variety of contemporary gram-positive pathogens, regardless of resistance to currently used drugs. The data provide a foundation for interpreting oritavancin activity and potential changes in susceptibility over time once oritavancin enters into clinical use.


Sign in / Sign up

Export Citation Format

Share Document