scholarly journals Inhibition of SOS Response by Nitric Oxide Donors in Escherichia coli Blocks Toxin Production and Hypermutation

Author(s):  
John K. Crane ◽  
Sarah R. Burke ◽  
Cassandra L. Alvarado

BackgroundPrevious reports have differed as to whether nitric oxide inhibits or stimulates the SOS response, a bacterial stress response that is often triggered by DNA damage. The SOS response is an important regulator of production of Shiga toxins (Stx) in Shiga-toxigenic E. coli (STEC). In addition, the SOS response is accompanied by hypermutation, which can lead to de novo emergence of antibiotic resistance. We studied these effects in vitro as well as in vivo.ResultsNitric oxide donors inhibited induction of the SOS response by classical inducers such as mitomycin C, ciprofloxacin, and zidovudine, as measured by assays for E. coli RecA. Nitric oxide donors also inhibited Stx toxin protein production as well as stx2 RNA in vitro and in vivo. In vivo experiments were performed with ligated ileal segments in the rabbit using a 20 h infection. The NO donor S-nitroso-acetylpenicillamine (SNAP) reduced hypermutation in vitro and in vivo, as measured by emergence of rifampin resistance. SNAP blocked the ability of the RecA protein to bind to single-stranded DNA in an electrophoretic mobility shift assay (EMSA) in vitro, an early event in the SOS response. The inhibitory effects of SNAP were additive with those of zinc acetate.ConclusionsNitric oxide donors blocked the initiation step of the SOS response. Downstream effects of this blockade included inhibition of Stx production and of hypermutation. Infection of rabbit loops with STEC resulted in a downregulation, rather than stimulation, of nitric oxide host defenses at 20 h of infection.

1991 ◽  
Vol 174 (5) ◽  
pp. 1167-1177 ◽  
Author(s):  
J Vuopio-Varkila ◽  
G K Schoolnik

Enteropathogenic Escherichia coli grow as discrete colonies on the mucous membranes of the small intestine. A similar pattern can be demonstrated in vitro; termed localized adherence (LA), it is characterized by the presence of circumscribed clusters of bacteria attached to the surfaces of cultured epithelial cells. The LA phenotype was studied using B171, an O111:NM enteropathogenic E. coli (EPEC) strain, and HEp-2 cell monolayers. LA could be detected 30-60 min after exposure of HEp-2 cells to B171. However, bacteria transferred from infected HEp-2 cells to fresh monolayers exhibited LA within 15 min, indicating that LA is an inducible phenotype. Induction of the LA phenotype was found to be associated with de novo protein synthesis and changes in the outer membrane proteins, including the production of a new 18.5-kD polypeptide. A partial NH2-terminal amino acid sequence of this polypeptide was obtained and showed it to be identical through residue 12 to the recently described bundle-forming pilus subunit of EPEC. Expression of the 18.5-kD polypeptide required the 57-megadalton enteropathogenic E. coli adherence plasmid previously shown to be required for the LA phenotype in vitro and full virulence in vivo. This observation, the correspondence of the 18.5-kD polypeptide to an EPEC-specific pilus protein, and the temporal correlation of its expression with the development of the LA phenotype suggest that it may contribute to the EPEC colonial mode of growth.


2002 ◽  
Vol 161 (4) ◽  
pp. 1409-1418 ◽  
Author(s):  
Maria Laura Giustizieri ◽  
Cristina Albanesi ◽  
Claudia Scarponi ◽  
Ornella De Pità ◽  
Giampiero Girolomoni

2003 ◽  
Vol 284 (5) ◽  
pp. C1140-C1148 ◽  
Author(s):  
Richard Weller ◽  
Ann Schwentker ◽  
Timothy R. Billiar ◽  
Yoram Vodovotz

Nitric oxide (NO) can either prevent or promote apoptosis, depending on cell type. In the present study, we tested the hypothesis that NO suppresses ultraviolet B radiation (UVB)-induced keratinocyte apoptosis both in vitro and in vivo. Irradiation with UVB or addition of the NO synthase (NOS) inhibitor N G-nitro-l-arginine methyl ester (l-NAME) increased apoptosis in the human keratinocyte cell line CCD 1106 KERTr, and apoptosis was greater when the two agents were given in combination. Addition of the chemical NO donor S-nitroso- N-acetyl-penicillamine (SNAP) immediately after UVB completely abrogated the rise in apoptosis induced by l-NAME. An adenoviral vector expressing human inducible NOS (AdiNOS) also reduced keratinocyte death after UVB. Caspase-3 activity, an indicator of apoptosis, doubled in keratinocytes incubated with l-NAME compared with the inactive isomer, d-NAME, and was reduced by SNAP. Apoptosis was also increased on addition of 1,H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Mice null for endothelial NOS (eNOS) exhibited significantly higher apoptosis than wild-type mice both in the dermis and epidermis, whereas mice null for inducible NOS (iNOS) exhibited more apoptosis than wild-type mice only in the dermis. These results demonstrate an antiapoptotic role for NO in keratinocytes, mediated by cGMP, and indicate an antiapoptotic role for both eNOS and iNOS in skin damage induced by UVB.


2006 ◽  
Vol 188 (3) ◽  
pp. 909-918 ◽  
Author(s):  
Jianmin Zhong ◽  
Stephane Skouloubris ◽  
Qiyuan Dai ◽  
Hannu Myllykallio ◽  
Alan G. Barbour

ABSTRACT The thyX gene for thymidylate synthase of the Lyme borreliosis (LB) agent Borrelia burgdorferi is located in a 54-kb linear plasmid. In the present study, we identified an orthologous thymidylate synthase gene in the relapsing fever (RF) agent Borrelia hermsii, located it in a 180-kb linear plasmid, and demonstrated its expression. The functions of the B. hermsii and B. burgdorferi thyX gene products were evaluated both in vivo, by complementation of a thymidylate synthase-deficient Escherichia coli mutant, and in vitro, by testing their activities after purification. The B. hermsii thyX gene complemented the thyA mutation in E. coli, and purified B. hermsii ThyX protein catalyzed the conversion of dTMP from dUMP. In contrast, the B. burgdorferi ThyX protein had only weakly detectable activity in vitro, and the B. burgdorferi thyX gene did not provide complementation in vivo. The lack of activity of B. burgdorferi's ThyX protein was associated with the substitution of a cysteine for a highly conserved arginine at position 91. The B. hermsii thyX locus was further distinguished by the downstream presence in the plasmid of orthologues of nrdI, nrdE, and nrdF, which encode the subunits of ribonucleoside diphosphate reductase and which are not present in the LB agents B. burgdorferi and Borrelia garinii. Phylogenetic analysis suggested that the nrdIEF cluster of B. hermsii was acquired by horizontal gene transfer. These findings indicate that Borrelia spp. causing RF have a greater capability for de novo pyrimidine synthesis than those causing LB, thus providing a basis for some of the biological differences between the two groups of pathogens.


1998 ◽  
Vol 107 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Thomas Runer ◽  
Sven Lindberg

In an animal model, nitric oxide (NO) has been shown to increase mucociliary activity in vivo and ciliary beat frequency in vitro. The aim of the present study was to investigate the effects of NO on blood flow and mucociliary activity in the human nose. The concentration of NO in nasal air was measured with a chemiluminescence technique after nebulizing the NO donor sodium nitroprusside (SNP) at a dose of 3.0 mg into the nose in six volunteers, and was found to increase by 50.1% ± 10.0% (mean ± SEM; p <.001) after the SNP challenge. Blood flow measured by laser Doppler flowmetry increased by 67.3% ± 15.5% (p <.05) after challenge with SNP at 1.0 mg, and by 75.4% ± 18.5% at 3.0 mg (p <.01; n = 6). The higher dose, which produced no subjective side effects, was then used in the mucociliary experiments. The maximum increase in nasal mucociliary activity was 57.2% ± 6.7% at 3.0 mg of SNP (n = 5). The findings support the view that NO regulates mucociliary activity and blood flow in the human nasal mucosa.


Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3538-3547 ◽  
Author(s):  
Joanne Hsieh ◽  
Karin E. Trajcevski ◽  
Sarah L. Farr ◽  
Christopher L. Baker ◽  
Elizabeth J. Lake ◽  
...  

The intestinal overproduction of apolipoprotein B48 (apoB48)-containing chylomicron particles is a common feature of diabetic dyslipidemia and contributes to cardiovascular risk in insulin resistant states. We previously reported that glucagon-like peptide-2 (GLP-2) is a key endocrine stimulator of enterocyte fat absorption and chylomicron output in the postprandial state. GLP-2's stimulatory effect on chylomicron production in the postabsorptive state has been confirmed in human studies. The mechanism by which GLP-2 regulates chylomicron production is unclear, because its receptor is not expressed on enterocytes. We provide evidence for a key role of nitric oxide (NO) in mediating the stimulatory effects of GLP-2 during the postprandial and postabsorptive periods. Intestinal chylomicron production was assessed in GLP-2-treated hamsters administered the pan-specific NO synthase (NOS) inhibitor L-NG-nitroarginine methyl ester (L-NAME), and in GLP-2-treated endothelial NOS knockout mice. L-NAME blocked GLP-2-stimulated apoB48 secretion and reduced triglycerides (TGs) in the TG-rich lipoprotein (TRL) fraction of the plasma in the postprandial state. Endothelial NOS-deficient mice were resistant to GLP-2 stimulation and secreted fewer large apoB48-particles. When TG storage pools were allowed to accumulate, L-NAME mitigated the GLP-2-mediated increase in TRL-TG, suggesting that NO is required for early mobilization and secretion of stored TG and preformed chylomicrons. Importantly, the NO donor S-nitroso-L-glutathione was able to elicit an increase in TRL-TG in vivo and stimulate chylomicron release in vitro in primary enterocytes. We describe a novel role for GLP-2-mediated NO-signaling as a critical regulator of intestinal lipid handling and a potential contributor to postprandial dyslipidemia.


Cephalalgia ◽  
2007 ◽  
Vol 27 (10) ◽  
pp. 1120-1127 ◽  
Author(s):  
A Gozalov ◽  
I Jansen-Olesen ◽  
D Klaerke ◽  
J Olesen

Both calcitonin gene-related peptide (CGRP) and nitric oxide (NO) are potent vasodilators that have been shown to induce headache in migraine patients. Their antagonists are effective in the treatment of migraine attacks. In the present study, we hypothesize that vasodilation induced by the NO donor glyceryltrinitrate (GTN) or by CGRP is partially mediated via large conductance calcium-activated potassium (BKCa) channels. The effects of the BKCa channel selective inhibitor iberiotoxin on dural and pial vasodilation induced by CGRP, GTN and endogenously released CGRP by transcranial electrical stimulation (TES) were examined. Iberiotoxin significantly attenuated GTN-induced dural and pial artery dilation in vivo and in vitro, but had no effect on vasodilation induced by CGRP and TES. Our results show that GTN- but not CGRP-induced dural and pial vasodilation involves opening of BKCa channels in rat.


2009 ◽  
Vol 25 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Samantha Carreiro ◽  
Scott Anderson ◽  
Hovhannes J. Gukasyan ◽  
Achim Krauss ◽  
Ganesh Prasanna

2008 ◽  
Vol 295 (2) ◽  
pp. H743-H754 ◽  
Author(s):  
Peter C. Minneci ◽  
Katherine J. Deans ◽  
Sruti Shiva ◽  
Huang Zhi ◽  
Steven M. Banks ◽  
...  

Hemoglobin (Hb) potently inactivates the nitric oxide (NO) radical via a dioxygenation reaction forming nitrate (NO3−). This inactivation produces endothelial dysfunction during hemolytic conditions and may contribute to the vascular complications of Hb-based blood substitutes. Hb also functions as a nitrite (NO2−) reductase, converting nitrite into NO as it deoxygenates. We hypothesized that during intravascular hemolysis, nitrite infusions would limit the vasoconstrictive properties of plasma Hb. In a canine model of low- and high-intensity hypotonic intravascular hemolysis, we characterized hemodynamic responses to nitrite infusions. Hemolysis increased systemic and pulmonary arterial pressures and systemic vascular resistance. Hemolysis also inhibited NO-dependent pulmonary and systemic vasodilation by the NO donor sodium nitroprusside. Compared with nitroprusside, nitrite demonstrated unique effects by not only inhibiting hemolysis-associated vasoconstriction but also by potentiating vasodilation at plasma Hb concentrations of <25 μM. We also observed an interaction between plasma Hb levels and nitrite to augment nitroprusside-induced vasodilation of the pulmonary and systemic circulation. This nitrite reductase activity of Hb in vivo was recapitulated in vitro using a mitochondrial NO sensor system. Nitrite infusions may promote NO generation from Hb while maintaining oxygen delivery; this effect could be harnessed to treat hemolytic conditions and to detoxify Hb-based blood substitutes.


1996 ◽  
Vol 271 (1) ◽  
pp. H133-H139 ◽  
Author(s):  
G. A. Cohen ◽  
A. J. Hobbs ◽  
R. M. Fitch ◽  
M. J. Zinner ◽  
G. Chaudhuri ◽  
...  

The objective of this study was to determine whether nitric oxide (NO) could function as a negative feedback modulator of endothelium-dependent vasodilation in vivo. To this end, the influence of exogenous NO on vasodilator responses in the rabbit hindquarters vascular bed was determined. Previous in vitro studies have demonstrated that NO inhibits both neuronal NO synthase from rat cerebellum as well as NO synthase derived from bovine aortic endothelial cells. The present study was conducted in the rabbit hindquarters vascular bed under conditions of constant blood flow so that changes in pressure directly reflected changes in vascular resistance. Under these in vivo conditions, the NO donor agent S-nitroso-N-acetylpenicillamine (SNAP) reversibly attenuated responses to the endothelium-dependent vasodilators, acetylcholine and bradykinin. In contrast, SNAP did not influence the endothelium-independent vasodilator response to SNAP itself or to 8-bromoguanosine 3',5'-cyclic monophosphate. These observations indicate clearly that NO interferes with endothelium-dependent vasodilator action and support the view that endogenous NO may actually play a physiological role in regulating vascular tone.


Sign in / Sign up

Export Citation Format

Share Document